mirror of
https://github.com/huggingface/candle.git
synced 2025-06-14 09:57:10 +00:00
298 lines
9.8 KiB
Rust
298 lines
9.8 KiB
Rust
// An implementation of LLaMA https://github.com/facebookresearch/llama
|
|
//
|
|
// This is based on nanoGPT in a similar way to:
|
|
// https://github.com/Lightning-AI/lit-llama/blob/main/lit_llama/model.py
|
|
//
|
|
// The tokenizer config can be retrieved from:
|
|
// https://huggingface.co/hf-internal-testing/llama-tokenizer/raw/main/tokenizer.json
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
use anyhow::{bail, Error as E, Result};
|
|
use clap::{Parser, ValueEnum};
|
|
|
|
use candle::{DType, Tensor};
|
|
use candle_nn::VarBuilder;
|
|
use candle_transformers::generation::{LogitsProcessor, Sampling};
|
|
use hf_hub::{api::sync::Api, Repo, RepoType};
|
|
use std::io::Write;
|
|
|
|
use candle_transformers::models::llama as model;
|
|
use model::{Llama, LlamaConfig};
|
|
|
|
const EOS_TOKEN: &str = "</s>";
|
|
const DEFAULT_PROMPT: &str = "My favorite theorem is ";
|
|
|
|
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
|
|
enum Which {
|
|
V1,
|
|
V2,
|
|
V3,
|
|
V31,
|
|
V3Instruct,
|
|
V31Instruct,
|
|
V32_1b,
|
|
V32_1bInstruct,
|
|
V32_3b,
|
|
V32_3bInstruct,
|
|
#[value(name = "solar-10.7b")]
|
|
Solar10_7B,
|
|
#[value(name = "tiny-llama-1.1b-chat")]
|
|
TinyLlama1_1BChat,
|
|
#[value(name = "SmoLM2-1.7B")]
|
|
SmolLM2_1B,
|
|
#[value(name = "SmoLM2-1.7B-Instruct")]
|
|
SmolLM2_1BInstruct,
|
|
#[value(name = "SmoLM2-360M")]
|
|
SmolLM2_360M,
|
|
#[value(name = "SmoLM2-360M-Instruct")]
|
|
SmolLM2_360MInstruct,
|
|
#[value(name = "SmoLM2-135M")]
|
|
SmolLM2_135M,
|
|
#[value(name = "SmoLM2-135M-Instruct")]
|
|
SmolLM2_135MInstruct,
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// The temperature used to generate samples.
|
|
#[arg(long, default_value_t = 0.8)]
|
|
temperature: f64,
|
|
|
|
/// Nucleus sampling probability cutoff.
|
|
#[arg(long)]
|
|
top_p: Option<f64>,
|
|
|
|
/// Only sample among the top K samples.
|
|
#[arg(long)]
|
|
top_k: Option<usize>,
|
|
|
|
/// The seed to use when generating random samples.
|
|
#[arg(long, default_value_t = 299792458)]
|
|
seed: u64,
|
|
|
|
/// The length of the sample to generate (in tokens).
|
|
#[arg(short = 'n', long, default_value_t = 10000)]
|
|
sample_len: usize,
|
|
|
|
/// Disable the key-value cache.
|
|
#[arg(long)]
|
|
no_kv_cache: bool,
|
|
|
|
/// The initial prompt.
|
|
#[arg(long)]
|
|
prompt: Option<String>,
|
|
|
|
/// Use different dtype than f16
|
|
#[arg(long)]
|
|
dtype: Option<String>,
|
|
|
|
/// Enable tracing (generates a trace-timestamp.json file).
|
|
#[arg(long)]
|
|
tracing: bool,
|
|
|
|
#[arg(long)]
|
|
model_id: Option<String>,
|
|
|
|
#[arg(long)]
|
|
revision: Option<String>,
|
|
|
|
/// The model size to use.
|
|
#[arg(long, default_value = "v3")]
|
|
which: Which,
|
|
|
|
#[arg(long)]
|
|
use_flash_attn: bool,
|
|
|
|
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
|
#[arg(long, default_value_t = 1.1)]
|
|
repeat_penalty: f32,
|
|
|
|
/// The context size to consider for the repeat penalty.
|
|
#[arg(long, default_value_t = 128)]
|
|
repeat_last_n: usize,
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
use tokenizers::Tokenizer;
|
|
use tracing_chrome::ChromeLayerBuilder;
|
|
use tracing_subscriber::prelude::*;
|
|
|
|
let args = Args::parse();
|
|
let _guard = if args.tracing {
|
|
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
|
tracing_subscriber::registry().with(chrome_layer).init();
|
|
Some(guard)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let device = candle_examples::device(args.cpu)?;
|
|
let dtype = match args.dtype.as_deref() {
|
|
Some("f16") => DType::F16,
|
|
Some("bf16") => DType::BF16,
|
|
Some("f32") => DType::F32,
|
|
Some(dtype) => bail!("Unsupported dtype {dtype}"),
|
|
None => DType::F16,
|
|
};
|
|
let (llama, tokenizer_filename, mut cache, config) = {
|
|
let api = Api::new()?;
|
|
let model_id = args.model_id.unwrap_or_else(|| {
|
|
let str = match args.which {
|
|
Which::V1 => "Narsil/amall-7b",
|
|
Which::V2 => "meta-llama/Llama-2-7b-hf",
|
|
Which::V3 => "meta-llama/Meta-Llama-3-8B",
|
|
Which::V3Instruct => "meta-llama/Meta-Llama-3-8B-Instruct",
|
|
Which::V31 => "meta-llama/Llama-3.1-8B",
|
|
Which::V31Instruct => "meta-llama/Llama-3.1-8B-Instruct",
|
|
Which::V32_1b => "meta-llama/Llama-3.2-1B",
|
|
Which::V32_1bInstruct => "meta-llama/Llama-3.2-1B-Instruct",
|
|
Which::V32_3b => "meta-llama/Llama-3.2-3B",
|
|
Which::V32_3bInstruct => "meta-llama/Llama-3.2-3B-Instruct",
|
|
Which::Solar10_7B => "upstage/SOLAR-10.7B-v1.0",
|
|
Which::TinyLlama1_1BChat => "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
|
Which::SmolLM2_135M => "HuggingFaceTB/SmolLM2-135M",
|
|
Which::SmolLM2_135MInstruct => "HuggingFaceTB/SmolLM2-135M-Instruct",
|
|
Which::SmolLM2_360M => "HuggingFaceTB/SmolLM2-360M",
|
|
Which::SmolLM2_360MInstruct => "HuggingFaceTB/SmolLM2-360M-Instruct",
|
|
Which::SmolLM2_1B => "HuggingFaceTB/SmolLM2-1.7B",
|
|
Which::SmolLM2_1BInstruct => "HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
|
};
|
|
str.to_string()
|
|
});
|
|
println!("loading the model weights from {model_id}");
|
|
let revision = args.revision.unwrap_or("main".to_string());
|
|
let api = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
|
|
|
|
let tokenizer_filename = api.get("tokenizer.json")?;
|
|
let config_filename = api.get("config.json")?;
|
|
let config: LlamaConfig = serde_json::from_slice(&std::fs::read(config_filename)?)?;
|
|
let config = config.into_config(args.use_flash_attn);
|
|
|
|
let filenames = match args.which {
|
|
Which::V1
|
|
| Which::V2
|
|
| Which::V3
|
|
| Which::V3Instruct
|
|
| Which::V31
|
|
| Which::V31Instruct
|
|
| Which::V32_3b
|
|
| Which::V32_3bInstruct
|
|
| Which::Solar10_7B => {
|
|
candle_examples::hub_load_safetensors(&api, "model.safetensors.index.json")?
|
|
}
|
|
Which::SmolLM2_360M
|
|
| Which::SmolLM2_360MInstruct
|
|
| Which::SmolLM2_135M
|
|
| Which::SmolLM2_135MInstruct
|
|
| Which::SmolLM2_1B
|
|
| Which::SmolLM2_1BInstruct
|
|
| Which::V32_1b
|
|
| Which::V32_1bInstruct
|
|
| Which::TinyLlama1_1BChat => {
|
|
vec![api.get("model.safetensors")?]
|
|
}
|
|
};
|
|
let cache = model::Cache::new(!args.no_kv_cache, dtype, &config, &device)?;
|
|
|
|
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
|
(Llama::load(vb, &config)?, tokenizer_filename, cache, config)
|
|
};
|
|
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
|
let eos_token_id = config.eos_token_id.or_else(|| {
|
|
tokenizer
|
|
.token_to_id(EOS_TOKEN)
|
|
.map(model::LlamaEosToks::Single)
|
|
});
|
|
let prompt = args.prompt.as_ref().map_or(DEFAULT_PROMPT, |p| p.as_str());
|
|
let mut tokens = tokenizer
|
|
.encode(prompt, true)
|
|
.map_err(E::msg)?
|
|
.get_ids()
|
|
.to_vec();
|
|
let mut tokenizer = candle_examples::token_output_stream::TokenOutputStream::new(tokenizer);
|
|
|
|
println!("starting the inference loop");
|
|
print!("{prompt}");
|
|
let mut logits_processor = {
|
|
let temperature = args.temperature;
|
|
let sampling = if temperature <= 0. {
|
|
Sampling::ArgMax
|
|
} else {
|
|
match (args.top_k, args.top_p) {
|
|
(None, None) => Sampling::All { temperature },
|
|
(Some(k), None) => Sampling::TopK { k, temperature },
|
|
(None, Some(p)) => Sampling::TopP { p, temperature },
|
|
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature },
|
|
}
|
|
};
|
|
LogitsProcessor::from_sampling(args.seed, sampling)
|
|
};
|
|
|
|
let mut start_gen = std::time::Instant::now();
|
|
let mut index_pos = 0;
|
|
let mut token_generated = 0;
|
|
for index in 0..args.sample_len {
|
|
let (context_size, context_index) = if cache.use_kv_cache && index > 0 {
|
|
(1, index_pos)
|
|
} else {
|
|
(tokens.len(), 0)
|
|
};
|
|
if index == 1 {
|
|
start_gen = std::time::Instant::now()
|
|
}
|
|
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
|
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
|
|
let logits = llama.forward(&input, context_index, &mut cache)?;
|
|
let logits = logits.squeeze(0)?;
|
|
let logits = if args.repeat_penalty == 1. {
|
|
logits
|
|
} else {
|
|
let start_at = tokens.len().saturating_sub(args.repeat_last_n);
|
|
candle_transformers::utils::apply_repeat_penalty(
|
|
&logits,
|
|
args.repeat_penalty,
|
|
&tokens[start_at..],
|
|
)?
|
|
};
|
|
index_pos += ctxt.len();
|
|
|
|
let next_token = logits_processor.sample(&logits)?;
|
|
token_generated += 1;
|
|
tokens.push(next_token);
|
|
|
|
match eos_token_id {
|
|
Some(model::LlamaEosToks::Single(eos_tok_id)) if next_token == eos_tok_id => {
|
|
break;
|
|
}
|
|
Some(model::LlamaEosToks::Multiple(ref eos_ids)) if eos_ids.contains(&next_token) => {
|
|
break;
|
|
}
|
|
_ => (),
|
|
}
|
|
if let Some(t) = tokenizer.next_token(next_token)? {
|
|
print!("{t}");
|
|
std::io::stdout().flush()?;
|
|
}
|
|
}
|
|
if let Some(rest) = tokenizer.decode_rest().map_err(E::msg)? {
|
|
print!("{rest}");
|
|
}
|
|
let dt = start_gen.elapsed();
|
|
println!(
|
|
"\n\n{} tokens generated ({} token/s)\n",
|
|
token_generated,
|
|
(token_generated - 1) as f64 / dt.as_secs_f64(),
|
|
);
|
|
Ok(())
|
|
}
|