Files
candle/candle-examples/examples/llava/image_processor.rs
chenwanqq cd4d941ed1 Add LLaVA support (#2234)
* first commit

* llava

* clippy and fmt

* some fixes

* minor fixes

* remove useless file

* refactor: Remove llava/constants.rs and update llava/mod.rs

* modify variable name

* modify code after clippy

* Minor tweaks.

---------

Co-authored-by: laurent <laurent.mazare@gmail.com>
2024-06-03 11:54:09 +02:00

318 lines
11 KiB
Rust

use std::cmp::min;
use candle::{bail, DType, Device, Result, Tensor};
use candle_transformers::models::llava::{
config::{HFPreProcessorConfig, LLaVAConfig},
utils::select_best_resolution,
};
use hf_hub::api::sync::Api;
use image::{imageops::overlay, DynamicImage, GenericImageView, Rgb, RgbImage};
use serde::{Deserialize, Serialize};
//This struct is mainly for LLaVA aplications, hence it's not completely compatible with python transformer CLIPImageProcessor few several preprocess that LLaVA used, including "openai/clip-vit-large-patch14-336" and "openai/clip-vit-large-patch14".
#[derive(Serialize, Deserialize, Debug)]
pub struct ImageProcessor {
#[serde(default = "default_size")]
pub size: u32, // this is not the same as python transformer
#[serde(default = "default_do_resize")]
pub do_resize: bool,
//resample: u32 // 3 for PIL bicubic, equivalent to rust CatmullRom. Hence below we use CatmullRom
#[serde(default = "default_do_center_crop")]
pub do_center_crop: bool,
#[serde(default = "default_crop_size")]
pub crop_size: u32, // this is not the same as python transformer
#[serde(default = "default_do_rescale")]
pub do_rescale: bool,
#[serde(default = "default_rescale_factor")]
pub rescale_factor: f32,
#[serde(default = "default_do_normalize")]
pub do_normalize: bool,
#[serde(default = "default_image_mean")]
pub image_mean: Vec<f32>,
#[serde(default = "default_image_std")]
pub image_std: Vec<f32>,
}
fn default_size() -> u32 {
224
}
fn default_do_resize() -> bool {
true
}
fn default_do_center_crop() -> bool {
true
}
fn default_crop_size() -> u32 {
224
}
fn default_do_rescale() -> bool {
true
}
fn default_rescale_factor() -> f32 {
1.0 / 255.0
}
fn default_do_normalize() -> bool {
true
}
fn default_image_mean() -> Vec<f32> {
vec![0.48145466, 0.4578275, 0.40821073]
}
fn default_image_std() -> Vec<f32> {
vec![0.26862954, 0.2613026, 0.2757771]
}
impl ImageProcessor {
pub fn from_pretrained(clip_id: &str) -> Result<Self> {
let api = Api::new().map_err(|e| candle::Error::Msg(e.to_string()))?;
let api = api.model(clip_id.to_string());
let config_filename = api
.get("preprocessor_config.json")
.map_err(|e| candle::Error::Msg(e.to_string()))?;
let image_processor =
serde_json::from_slice(&std::fs::read(config_filename).map_err(candle::Error::Io)?)
.map_err(|e| candle::Error::Msg(e.to_string()))?;
Ok(image_processor)
}
pub fn from_hf_preprocessor_config(hf_preprocessor_config: &HFPreProcessorConfig) -> Self {
Self {
size: hf_preprocessor_config.size["shortest_edge"] as u32,
do_resize: hf_preprocessor_config.do_resize,
do_center_crop: hf_preprocessor_config.do_center_crop,
crop_size: hf_preprocessor_config.crop_size["height"] as u32,
do_rescale: hf_preprocessor_config.do_rescale,
rescale_factor: hf_preprocessor_config.rescale_factor,
do_normalize: hf_preprocessor_config.do_normalize,
image_mean: hf_preprocessor_config.image_mean.clone(),
image_std: hf_preprocessor_config.image_std.clone(),
}
}
///shortest edge to self.resize, other edge is resized to maintain aspect ratio
pub fn resize(&self, image: &DynamicImage) -> DynamicImage {
let (width, height) = image.dimensions();
let size = self.size;
if width == size && height == size {
image.clone()
} else {
let (new_width, new_height) = if width < height {
(
size,
(((size * height) as f32) / width as f32).ceil() as u32,
)
} else {
(
(((size * width) as f32) / height as f32).ceil() as u32,
size,
)
};
image.resize(
new_width,
new_height,
image::imageops::FilterType::CatmullRom,
)
}
}
pub fn center_crop(&self, image: &DynamicImage) -> DynamicImage {
let (width, height) = image.dimensions();
let crop_size = self.crop_size;
let (left, top) = calculate_middle((width, height), (crop_size, crop_size));
image.crop_imm(left, top, crop_size, crop_size)
}
pub fn to_tensor(&self, image: &DynamicImage) -> Result<Tensor> {
let img = image.to_rgb8().into_raw();
let (width, height) = image.dimensions();
Tensor::from_vec(img, (height as usize, width as usize, 3), &Device::Cpu)?
.to_dtype(DType::F32) // only for internal compute
}
pub fn rescale(&self, tensor: &Tensor) -> Result<Tensor> {
let rescale_factor = self.rescale_factor as f64;
tensor.affine(rescale_factor, 0.0)
}
pub fn normalize(&self, tensor: &Tensor) -> Result<Tensor> {
let image_mean = self.image_mean.clone();
let image_std = self.image_std.clone();
let mean = Tensor::from_vec(image_mean, (3,), &Device::Cpu)?;
let std = Tensor::from_vec(image_std, (3,), &Device::Cpu)?;
tensor.broadcast_sub(&mean)?.broadcast_div(&std)
}
pub fn to_channel_dimension_format(&self, tensor: &Tensor) -> Result<Tensor> {
tensor.permute((2, 0, 1))
}
pub fn preprocess(&self, image: &DynamicImage) -> Result<Tensor> {
let image = if self.do_resize {
self.resize(image)
} else {
image.clone()
};
let image = if self.do_center_crop {
self.center_crop(&image)
} else {
image
};
let tensor = self.to_tensor(&image)?;
let tensor = if self.do_rescale {
self.rescale(&tensor)?
} else {
tensor
};
let tensor = if self.do_normalize {
self.normalize(&tensor)?
} else {
tensor
};
self.to_channel_dimension_format(&tensor)
}
}
pub fn calculate_middle(image_size: (u32, u32), center_size: (u32, u32)) -> (u32, u32) {
let (width, height) = image_size;
let (center_width, center_height) = center_size;
let left = if width <= center_width {
0
} else {
((width as f32 - center_width as f32) / 2.0).ceil() as u32
};
let top = if height <= center_height {
0
} else {
((height as f32 - center_height as f32) / 2.0).ceil() as u32
};
(left, top)
}
pub fn process_image(
image: &DynamicImage,
processor: &ImageProcessor,
llava_config: &LLaVAConfig,
) -> candle::Result<Tensor> {
if llava_config.image_aspect_ratio == *"square" {
processor.preprocess(image)?.unsqueeze(0)
} else if llava_config.image_aspect_ratio == *"anyres" {
process_anyres_image(image, processor, &llava_config.image_grid_pinpoints)
} else if llava_config.image_aspect_ratio == *"pad" {
process_pad_image(image, processor)
} else {
bail!("Invalid image aspect ratio")
}
}
fn process_pad_image(image: &DynamicImage, processor: &ImageProcessor) -> Result<Tensor> {
let mean_color = processor
.image_mean
.iter()
.map(|x| ((*x) * 255.0) as u8)
.collect::<Vec<u8>>();
let mean_color = Rgb::from([mean_color[0], mean_color[1], mean_color[2]]);
let image_padded = expand2square(image, mean_color);
processor.preprocess(&image_padded)
}
fn process_anyres_image(
image: &DynamicImage,
processor: &ImageProcessor,
grid_pinpoints: &[(u32, u32)],
) -> Result<Tensor> {
let original_size = image.dimensions();
let best_resolution = select_best_resolution(original_size, grid_pinpoints);
let image_padded = resize_and_pad_image(image, best_resolution);
let image_original_resize = image.resize_exact(
processor.size,
processor.size,
image::imageops::FilterType::CatmullRom,
);
let mut patches = vec![image_original_resize];
for patch in divide_to_patches(&image_padded, processor.crop_size) {
patches.push(patch);
}
let tensors = patches
.iter()
.map(|patch| processor.preprocess(patch))
.collect::<Result<Vec<Tensor>>>()?;
Tensor::stack(&tensors, 0)
}
fn expand2square(image: &DynamicImage, background_color: Rgb<u8>) -> DynamicImage {
let (width, height) = image.dimensions();
match width.cmp(&height) {
std::cmp::Ordering::Less => {
let mut new_image =
DynamicImage::from(RgbImage::from_pixel(height, height, background_color));
overlay(&mut new_image, image, ((height - width) / 2) as i64, 0);
new_image
}
std::cmp::Ordering::Equal => image.clone(),
std::cmp::Ordering::Greater => {
let mut new_image =
DynamicImage::from(RgbImage::from_pixel(width, width, background_color));
overlay(&mut new_image, image, 0, ((width - height) / 2) as i64);
new_image
}
}
}
fn resize_and_pad_image(image: &DynamicImage, target_resolution: (u32, u32)) -> DynamicImage {
let (original_width, original_height) = image.dimensions();
let original_width_f = original_width as f32;
let original_height_f = original_height as f32;
let (target_width, target_height) = target_resolution;
let target_width_f = target_width as f32;
let target_height_f = target_height as f32;
let scale_w = target_width_f / original_width_f;
let scale_h = target_height_f / original_height_f;
let (new_width, new_height) = if scale_w < scale_h {
(
target_width,
min((original_height_f * scale_w).ceil() as u32, target_height),
)
} else {
(
min((original_width_f * scale_h).ceil() as u32, target_width),
target_height,
)
};
let resized_image = image.resize_exact(
new_width,
new_height,
image::imageops::FilterType::CatmullRom,
);
let mut new_image = DynamicImage::new_rgb8(target_width, target_height);
let (paste_x, paste_y) =
calculate_middle((target_width, target_height), (new_width, new_height));
overlay(
&mut new_image,
&resized_image,
paste_x.into(),
paste_y.into(),
);
new_image
}
fn divide_to_patches(image: &DynamicImage, patch_size: u32) -> Vec<DynamicImage> {
let (width, height) = image.dimensions();
let mut patches = Vec::new();
for y in (0..height).step_by(patch_size as usize) {
for x in (0..width).step_by(patch_size as usize) {
let patch = image.crop_imm(x, y, patch_size, patch_size);
patches.push(patch);
}
}
patches
}