Files
shua 6056fd5c90 onnx: fix pad, unsqueeze (#2317)
* onnx: fix pad, unsqueeze

both implementations have off-by-one errors:
- Pad 'reflect' cycle for eg `dim==3` is `[0,1,2,1]` which has length of
  4 (or `dim*2 - 2`) not 5 (current code `dim*2 - 1`)
- Unsqueeze(-1) for tensor with `dim==3` should be 3 (ie `dim+index+1`)
  not 2 (ie currently `dim+index`)

in addition, Pad is incorrectly calculating the starting padding.
If we want to pad out 2 elements to the start, and we have this cycle
of indices of length 6, then we should skip 4 elements, but currently
we skip 2. A more visual representation of what's going on is below:

```
pad_start: 2
data:      [a,b,c,d]
indices:   [0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, ..] // zigzag between 0..4
actual:    skip [ c  d| c  b  a  b]
expected:  ~  skip  ~ [ c  b| a  b  c  d]
```

The values between `[` and `|` are padding and the values between
`|` and `]` in the example should match the original data being padded.

* Fix clippy lints.

---------

Co-authored-by: Laurent <laurent.mazare@gmail.com>
2024-07-23 23:10:57 +02:00

317 lines
11 KiB
Rust

pub mod constants;
pub mod conversation;
pub mod image_processor;
use candle_transformers::generation::{LogitsProcessor, Sampling};
use candle_transformers::models::llama::Cache;
use anyhow::{bail, Error as E, Result};
use candle::{DType, Device, IndexOp, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::models::llava::config::{
HFGenerationConfig, HFLLaVAConfig, HFPreProcessorConfig,
};
use candle_transformers::models::llava::{config::LLaVAConfig, LLaVA};
use clap::Parser;
use constants::*;
use conversation::Conversation;
use hf_hub::api::sync::Api;
use image_processor::{process_image, ImageProcessor};
use std::io::Write;
use tokenizers::Tokenizer;
#[derive(Parser, Debug)]
#[command(author, version, about,long_about=None)]
struct Args {
#[arg(long, default_value = "llava-hf/llava-v1.6-vicuna-7b-hf")]
model_path: String,
#[arg(long, default_value = "tokenizer/tokenizer.json")]
tokenizer_path: String,
#[arg(long)]
model_base: Option<String>,
#[arg(long)]
image_file: String, // Required
#[arg(long)]
conv_mode: Option<String>,
#[arg(long, default_value_t = 0.2)]
temperature: f32,
#[arg(long, default_value_t = 512)]
max_new_tokens: usize,
#[arg(long, action)]
hf: bool,
#[arg(long, action)]
cpu: bool,
#[arg(long, action)]
no_kv_cache: bool,
#[arg(long)]
prompt: String,
/// The seed to use when generating random samples. Copy from candle llama. Not exist in python llava.
#[arg(long, default_value_t = 299792458)]
seed: u64,
}
//from https://github.com/huggingface/candle/blob/main/candle-examples/examples/clip/main.rs
fn load_image<T: AsRef<std::path::Path>>(
path: T,
processor: &ImageProcessor,
llava_config: &LLaVAConfig,
dtype: DType,
) -> Result<((u32, u32), Tensor)> {
let img = image::ImageReader::open(path)?.decode()?;
let img_tensor = process_image(&img, processor, llava_config)?;
Ok(((img.width(), img.height()), img_tensor.to_dtype(dtype)?))
}
fn get_model_name_from_path(model_path: &str) -> String {
let model_paths: Vec<String> = model_path
.trim_matches('/')
.split('/')
.map(|s| s.to_string())
.collect();
if model_paths.last().unwrap().starts_with("checkpoint-") {
format!(
"{}_{}",
model_paths[model_paths.len() - 2],
model_paths.last().unwrap()
)
} else {
model_paths.last().unwrap().to_string()
}
}
fn duplicate_vec<T>(vec: &[T], n: usize) -> Vec<T>
where
T: Clone,
{
let mut res = Vec::new();
for _ in 0..n {
res.extend(vec.to_owned());
}
res
}
fn insert_separator<T>(x: Vec<Vec<T>>, sep: Vec<T>) -> Vec<Vec<T>>
where
T: Clone,
{
let sep = vec![sep];
let sep = duplicate_vec(&sep, x.len());
let mut res = x
.iter()
.zip(sep.iter())
.flat_map(|(x, y)| vec![x.clone(), y.clone()])
.collect::<Vec<Vec<T>>>();
res.pop();
res
}
fn tokenizer_image_token(
prompt: &str,
tokenizer: &Tokenizer,
image_token_index: i64,
llava_config: &LLaVAConfig,
) -> Result<Tensor> {
let prompt_chunks = prompt
.split("<image>")
.map(|s| {
tokenizer
.encode(s, true)
.unwrap()
.get_ids()
.to_vec()
.iter()
.map(|x| *x as i64)
.collect()
})
.collect::<Vec<Vec<i64>>>();
let mut input_ids = Vec::new();
let mut offset = 0;
if !prompt_chunks.is_empty()
&& !prompt_chunks[0].is_empty()
&& prompt_chunks[0][0] == llava_config.bos_token_id as i64
{
offset = 1;
input_ids.push(prompt_chunks[0][0]);
}
for x in insert_separator(
prompt_chunks,
duplicate_vec(&[image_token_index], offset + 1),
)
.iter()
{
input_ids.extend(x[1..].to_vec())
}
let input_len = input_ids.len();
Tensor::from_vec(input_ids, (1, input_len), &Device::Cpu).map_err(E::msg)
}
fn main() -> Result<()> {
let mut args = Args::parse();
let device = candle_examples::device(args.cpu)?;
println!("Start loading model");
let api = Api::new()?;
let api = api.model(args.model_path.clone());
let (llava_config, tokenizer, clip_vision_config, image_processor) = if args.hf {
let config_filename = api.get("config.json")?;
let hf_llava_config: HFLLaVAConfig =
serde_json::from_slice(&std::fs::read(config_filename)?)?;
let generation_config_filename = api.get("generation_config.json")?;
let generation_config: HFGenerationConfig =
serde_json::from_slice(&std::fs::read(generation_config_filename)?)?;
let preprocessor_config_filename = api.get("preprocessor_config.json")?;
let preprocessor_config: HFPreProcessorConfig =
serde_json::from_slice(&std::fs::read(preprocessor_config_filename)?)?;
let llava_config =
hf_llava_config.to_llava_config(&generation_config, &preprocessor_config);
let tokenizer_filename = api.get("tokenizer.json")?;
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let clip_vision_config = hf_llava_config.to_clip_vision_config();
(
llava_config,
tokenizer,
Some(clip_vision_config),
ImageProcessor::from_hf_preprocessor_config(&preprocessor_config),
)
} else {
let config_filename = api.get("config.json")?;
let llava_config: LLaVAConfig = serde_json::from_slice(&std::fs::read(config_filename)?)?;
let tokenizer = Tokenizer::from_file(&args.tokenizer_path)
.map_err(|e| E::msg(format!("Error loading {}: {}", &args.tokenizer_path, e)))?;
(
llava_config.clone(),
tokenizer,
None,
ImageProcessor::from_pretrained(&llava_config.mm_vision_tower.unwrap())?,
)
};
let llama_config = llava_config.to_llama_config();
let dtype: DType = match llava_config.torch_dtype.as_str() {
"float16" => DType::F16,
"bfloat16" => DType::BF16,
_ => bail!("unsupported dtype"),
};
let eos_token_id = llava_config.eos_token_id;
println!("setting kv cache");
let mut cache = Cache::new(!args.no_kv_cache, dtype, &llama_config, &device)?;
println!("loading model weights");
let weight_filenames =
candle_examples::hub_load_safetensors(&api, "model.safetensors.index.json")?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&weight_filenames, dtype, &device)? };
let llava: LLaVA = LLaVA::load(vb, &llava_config, clip_vision_config)?;
println!("generating conv template");
let image_token_se = format!(
"{}{}{}",
DEFAULT_IM_START_TOKEN, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_END_TOKEN
);
let qs = if args.prompt.contains(IMAGE_PLACEHOLDER) {
if llava_config.mm_use_im_start_end {
args.prompt.replace(IMAGE_PLACEHOLDER, &image_token_se)
} else {
args.prompt.replace(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN)
}
} else if llava_config.mm_use_im_start_end {
format!("{}\n{}", image_token_se, args.prompt)
} else {
format!("{}\n{}", DEFAULT_IMAGE_TOKEN, args.prompt)
};
let model_name = get_model_name_from_path(&args.model_path).to_lowercase();
let conv_mode = if model_name.contains("llama-2") {
"llava_llama_2"
} else if model_name.contains("mistral") {
"mistral_instruct"
} else if model_name.contains("v1.6-34b") {
"chatml_direct"
} else if model_name.contains("v1") {
"llava_v1"
} else if model_name.contains("mpt") {
"mpt"
} else {
"llava_v0"
};
if args.conv_mode.is_some() && args.conv_mode.as_deref() != Some(conv_mode) {
println!(
"Warning: the model is trained with {}, but you are using {}",
conv_mode,
args.conv_mode.as_deref().unwrap()
);
} else {
args.conv_mode = Some(conv_mode.to_string());
}
let mut conv = match args.conv_mode {
Some(conv_mode) => match conv_mode.as_str() {
"chatml_direct" => Conversation::conv_chatml_direct(),
"llava_v1" => Conversation::conv_llava_v1(),
_ => todo!("not implement yet"),
},
None => bail!("conv_mode is required"),
};
conv.append_user_message(Some(&qs));
conv.append_assistant_message(None);
let prompt = conv.get_prompt();
println!("loading image");
let (image_size, image_tensor) =
load_image(&args.image_file, &image_processor, &llava_config, dtype)
.map_err(|e| E::msg(format!("Error loading {}: {}", &args.image_file, e)))?;
let image_tensor = image_tensor.to_device(&device)?;
let mut logits_processor = {
let temperature = f64::from(args.temperature);
let sampling = if temperature <= 0. {
Sampling::ArgMax
} else {
Sampling::All { temperature }
};
LogitsProcessor::from_sampling(args.seed, sampling)
};
// get input tokens
let tokens = tokenizer_image_token(
&prompt,
&tokenizer,
llava_config.image_token_index as i64,
&llava_config,
)?;
let mut input_embeds =
llava.prepare_inputs_labels_for_multimodal(&tokens, &[image_tensor], &[image_size])?;
//inference loop, based on https://github.com/huggingface/candle/blob/main/candle-examples/examples/llama/main.rs
let mut tokenizer = candle_examples::token_output_stream::TokenOutputStream::new(tokenizer);
let mut index_pos = 0;
for index in 0..args.max_new_tokens {
let (_, input_embeds_len, _) = input_embeds.dims3()?;
let (context_size, context_index) = if cache.use_kv_cache && index > 0 {
(1, index_pos)
} else {
(input_embeds_len, 0)
};
let input = input_embeds.i((.., input_embeds_len.saturating_sub(context_size).., ..))?;
let logits = llava.forward(&input, context_index, &mut cache)?; //[1,32000]
let logits = logits.squeeze(0)?;
let (_, input_len, _) = input.dims3()?;
index_pos += input_len;
let next_token = logits_processor.sample(&logits)?;
let next_token_tensor = Tensor::from_vec(vec![next_token], 1, &device)?;
let next_embeds = llava.llama.embed(&next_token_tensor)?.unsqueeze(0)?;
input_embeds = Tensor::cat(&[input_embeds, next_embeds], 1)?;
if next_token == eos_token_id as u32 {
break;
}
if let Some(t) = tokenizer.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
}
if let Some(rest) = tokenizer.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
Ok(())
}