Files

352 lines
11 KiB
Rust

#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::{Error as E, Result};
use clap::Parser;
use candle::{DType, Device, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::{
generation::LogitsProcessor,
models::{moondream, quantized_moondream},
};
use tokenizers::Tokenizer;
enum Model {
Moondream(moondream::Model),
Quantized(quantized_moondream::Model),
}
struct TextGeneration {
model: Model,
device: Device,
tokenizer: Tokenizer,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
verbose_prompt: bool,
}
impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(
model: Model,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
repeat_penalty: f32,
repeat_last_n: usize,
verbose_prompt: bool,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
tokenizer,
logits_processor,
repeat_penalty,
repeat_last_n,
verbose_prompt,
device: device.clone(),
}
}
fn run(&mut self, prompt: &str, image_embeds: &Tensor, sample_len: usize) -> Result<()> {
use std::io::Write;
println!("starting the inference loop");
let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?;
if tokens.is_empty() {
anyhow::bail!("Empty prompts are not supported in the Moondream model.")
}
if self.verbose_prompt {
for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
let token = token.replace('▁', " ").replace("<0x0A>", "\n");
println!("{id:7} -> '{token}'");
}
}
let mut tokens = tokens.get_ids().to_vec();
let mut generated_tokens = 0usize;
// Moondream tokenizer bos_token and eos_token is "<|endoftext|>"
// https://huggingface.co/vikhyatk/moondream2/blob/main/special_tokens_map.json
let special_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") {
Some(token) => *token,
None => anyhow::bail!("cannot find the special token"),
};
let (bos_token, eos_token) = (special_token, special_token);
let start_gen = std::time::Instant::now();
let mut load_t = std::time::Duration::from_secs_f64(0f64);
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = if index > 0 {
match self.model {
Model::Moondream(ref mut model) => model.text_model.forward(&input)?,
Model::Quantized(ref mut model) => model.text_model.forward(&input)?,
}
} else {
let bos_token = Tensor::new(&[bos_token], &self.device)?.unsqueeze(0)?;
let logits = match self.model {
Model::Moondream(ref mut model) => {
model
.text_model
.forward_with_img(&bos_token, &input, image_embeds)?
}
Model::Quantized(ref mut model) => {
model
.text_model
.forward_with_img(&bos_token, &input, image_embeds)?
}
};
load_t = start_gen.elapsed();
println!("load_t: {:?}", load_t);
logits
};
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token || tokens.ends_with(&[27, 10619, 29] /* <END> */) {
break;
}
let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
print!("{token}");
std::io::stdout().flush()?;
}
let dt = start_gen.elapsed() - load_t;
println!(
"\ngenerated in {} seconds\n{generated_tokens} tokens generated ({:.2} token/s)",
dt.as_secs_f64(),
(generated_tokens - 1) as f64 / dt.as_secs_f64()
);
Ok(())
}
}
#[derive(Parser)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
/// Display the token for the specified prompt.
#[arg(long)]
verbose_prompt: bool,
#[arg(long)]
prompt: String,
#[arg(long)]
image: String,
/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 0)]
seed: u64,
#[arg(long, default_value_t = 5000)]
sample_len: usize,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.0)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
#[arg(long)]
model_id: Option<String>,
#[arg(long)]
revision: Option<String>,
#[arg(long)]
quantized: bool,
/// Use f16 precision for all the computations rather than f32.
#[arg(long)]
f16: bool,
#[arg(long)]
model_file: Option<String>,
#[arg(long)]
tokenizer_file: Option<String>,
}
/// Loads an image from disk using the image crate, this returns a tensor with shape
/// (3, 378, 378).
pub fn load_image<P: AsRef<std::path::Path>>(p: P) -> candle::Result<Tensor> {
let img = image::ImageReader::open(p)?
.decode()
.map_err(candle::Error::wrap)?
.resize_to_fill(378, 378, image::imageops::FilterType::Triangle); // Adjusted to 378x378
let img = img.to_rgb8();
let data = img.into_raw();
let data = Tensor::from_vec(data, (378, 378, 3), &Device::Cpu)?.permute((2, 0, 1))?;
let mean = Tensor::new(&[0.5f32, 0.5, 0.5], &Device::Cpu)?.reshape((3, 1, 1))?;
let std = Tensor::new(&[0.5f32, 0.5, 0.5], &Device::Cpu)?.reshape((3, 1, 1))?;
(data.to_dtype(candle::DType::F32)? / 255.)?
.broadcast_sub(&mean)?
.broadcast_div(&std)
}
#[tokio::main]
async fn main() -> anyhow::Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature.unwrap_or(0.),
args.repeat_penalty,
args.repeat_last_n
);
let start = std::time::Instant::now();
let api = hf_hub::api::tokio::Api::new()?;
let (model_id, revision) = match args.model_id {
Some(model_id) => (model_id.to_string(), None),
None => {
if args.quantized {
("santiagomed/candle-moondream".to_string(), None)
} else {
(
"vikhyatk/moondream1".to_string(),
Some("f6e9da68e8f1b78b8f3ee10905d56826db7a5802"),
)
}
}
};
let revision = match (args.revision, revision) {
(Some(r), _) => r,
(None, Some(r)) => r.to_string(),
(None, None) => "main".to_string(),
};
let repo = api.repo(hf_hub::Repo::with_revision(
model_id,
hf_hub::RepoType::Model,
revision,
));
let model_file = match args.model_file {
Some(m) => m.into(),
None => {
if args.quantized {
repo.get("model-q4_0.gguf").await?
} else {
repo.get("model.safetensors").await?
}
}
};
let tokenizer = match args.tokenizer_file {
Some(m) => m.into(),
None => repo.get("tokenizer.json").await?,
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?;
let start = std::time::Instant::now();
let device = candle_examples::device(args.cpu)?;
let config = moondream::Config::v2();
let dtype = if args.quantized {
if args.f16 {
anyhow::bail!("Quantized model does not support f16");
}
DType::F32
} else if device.is_cuda() || args.f16 {
DType::F16
} else {
DType::F32
};
let model = if args.quantized {
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(
&model_file,
&device,
)?;
let model = quantized_moondream::Model::new(&config, vb)?;
Model::Quantized(model)
} else {
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], dtype, &device)? };
let model = moondream::Model::new(&config, vb)?;
Model::Moondream(model)
};
println!("loaded the model in {:?}", start.elapsed());
let start = std::time::Instant::now();
let image = load_image(args.image)?
.to_device(&device)?
.to_dtype(dtype)?;
let image_embeds = image.unsqueeze(0)?;
let image_embeds = match model {
Model::Moondream(ref m) => image_embeds.apply(m.vision_encoder())?,
Model::Quantized(ref m) => image_embeds.apply(m.vision_encoder())?,
};
println!(
"loaded and encoded the image {image:?} in {:?}",
start.elapsed()
);
let prompt = format!("\n\nQuestion: {0}\n\nAnswer:", args.prompt);
let mut pipeline = TextGeneration::new(
model,
tokenizer,
args.seed,
args.temperature,
args.top_p,
args.repeat_penalty,
args.repeat_last_n,
args.verbose_prompt,
&device,
);
pipeline.run(&prompt, &image_embeds, args.sample_len)?;
Ok(())
}