mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 18:28:24 +00:00

* Metal quantized modifications proposal. - Add a device param, wherever needed. - Create new QMetal storage thing that implements QuantizedType. - Update everywhere needed. Fix Python. Fixing examples. Fix: fmt + clippy + stub. Moving everything around. Only missing the actual implems. Fixing everything + adding dequantized kernels. More work. Fixing matmul. Fmt + Clippy Some clippy fixes. Working state. Q2K Metal -> Bugged (also present in GGML). Q4K CPU -> Bugged (present previously, new test catch it). Q5K CPU -> Bugged (present previously). Q8_1 Both -> Never really implemented it seems Q8K metal -> Never implemented in metal Fixing Q2K bug (present in ggml). * Cleanup. * Fix the rebase. * Removing the fences speeds everything up and *is* correct this time... * Cleanup the fence. * After rebase. * Bad code removal. * Rebase after phi2 merge + fix replit default to CPU. * Making the CI happy. * More happy tests. --------- Co-authored-by: Nicolas Patry <nicolas@Nicolass-MacBook-Pro.local>
234 lines
7.6 KiB
Rust
234 lines
7.6 KiB
Rust
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
use std::io::Write;
|
|
use std::path::PathBuf;
|
|
|
|
use candle_transformers::models::quantized_t5 as t5;
|
|
|
|
use anyhow::{Error as E, Result};
|
|
use candle::{Device, Tensor};
|
|
use candle_transformers::generation::LogitsProcessor;
|
|
use clap::{Parser, ValueEnum};
|
|
use hf_hub::{api::sync::Api, api::sync::ApiRepo, Repo, RepoType};
|
|
use tokenizers::Tokenizer;
|
|
|
|
#[derive(Clone, Debug, Copy, ValueEnum)]
|
|
enum Which {
|
|
T5Small,
|
|
FlanT5Small,
|
|
FlanT5Base,
|
|
FlanT5Large,
|
|
FlanT5Xl,
|
|
FlanT5Xxl,
|
|
}
|
|
|
|
#[derive(Parser, Debug, Clone)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// Enable tracing (generates a trace-timestamp.json file).
|
|
#[arg(long)]
|
|
tracing: bool,
|
|
|
|
/// The model repository to use on the HuggingFace hub.
|
|
#[arg(long)]
|
|
model_id: Option<String>,
|
|
|
|
#[arg(long)]
|
|
revision: Option<String>,
|
|
|
|
#[arg(long)]
|
|
weight_file: Option<String>,
|
|
|
|
#[arg(long)]
|
|
config_file: Option<String>,
|
|
|
|
// Enable/disable decoding.
|
|
#[arg(long, default_value = "false")]
|
|
disable_cache: bool,
|
|
|
|
/// Use this prompt, otherwise compute sentence similarities.
|
|
#[arg(long)]
|
|
prompt: String,
|
|
|
|
/// The temperature used to generate samples.
|
|
#[arg(long, default_value_t = 0.8)]
|
|
temperature: f64,
|
|
|
|
/// Nucleus sampling probability cutoff.
|
|
#[arg(long)]
|
|
top_p: Option<f64>,
|
|
|
|
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
|
#[arg(long, default_value_t = 1.1)]
|
|
repeat_penalty: f32,
|
|
|
|
/// The context size to consider for the repeat penalty.
|
|
#[arg(long, default_value_t = 64)]
|
|
repeat_last_n: usize,
|
|
|
|
/// The model size to use.
|
|
#[arg(long, default_value = "t5-small")]
|
|
which: Which,
|
|
}
|
|
|
|
struct T5ModelBuilder {
|
|
device: Device,
|
|
config: t5::Config,
|
|
weights_filename: PathBuf,
|
|
}
|
|
|
|
impl T5ModelBuilder {
|
|
pub fn load(args: &Args) -> Result<(Self, Tokenizer)> {
|
|
let device = Device::Cpu;
|
|
let default_model = "lmz/candle-quantized-t5".to_string();
|
|
let (model_id, revision) = match (args.model_id.to_owned(), args.revision.to_owned()) {
|
|
(Some(model_id), Some(revision)) => (model_id, revision),
|
|
(Some(model_id), None) => (model_id, "main".to_string()),
|
|
(None, Some(revision)) => (default_model, revision),
|
|
(None, None) => (default_model, "main".to_string()),
|
|
};
|
|
|
|
let repo = Repo::with_revision(model_id, RepoType::Model, revision);
|
|
let api = Api::new()?;
|
|
let api = api.repo(repo);
|
|
let config_filename = match &args.config_file {
|
|
Some(filename) => Self::get_local_or_remote_file(filename, &api)?,
|
|
None => match args.which {
|
|
Which::T5Small => api.get("config.json")?,
|
|
Which::FlanT5Small => api.get("config-flan-t5-small.json")?,
|
|
Which::FlanT5Base => api.get("config-flan-t5-base.json")?,
|
|
Which::FlanT5Large => api.get("config-flan-t5-large.json")?,
|
|
Which::FlanT5Xl => api.get("config-flan-t5-xl.json")?,
|
|
Which::FlanT5Xxl => api.get("config-flan-t5-xxl.json")?,
|
|
},
|
|
};
|
|
let tokenizer_filename = api.get("tokenizer.json")?;
|
|
let weights_filename = match &args.weight_file {
|
|
Some(filename) => Self::get_local_or_remote_file(filename, &api)?,
|
|
None => match args.which {
|
|
Which::T5Small => api.get("model.gguf")?,
|
|
Which::FlanT5Small => api.get("model-flan-t5-small.gguf")?,
|
|
Which::FlanT5Base => api.get("model-flan-t5-base.gguf")?,
|
|
Which::FlanT5Large => api.get("model-flan-t5-large.gguf")?,
|
|
Which::FlanT5Xl => api.get("model-flan-t5-xl.gguf")?,
|
|
Which::FlanT5Xxl => api.get("model-flan-t5-xxl.gguf")?,
|
|
},
|
|
};
|
|
let config = std::fs::read_to_string(config_filename)?;
|
|
let mut config: t5::Config = serde_json::from_str(&config)?;
|
|
config.use_cache = !args.disable_cache;
|
|
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
|
Ok((
|
|
Self {
|
|
device,
|
|
config,
|
|
weights_filename,
|
|
},
|
|
tokenizer,
|
|
))
|
|
}
|
|
|
|
pub fn build_model(&self) -> Result<t5::T5ForConditionalGeneration> {
|
|
let device = Device::Cpu;
|
|
let vb = t5::VarBuilder::from_gguf(&self.weights_filename, &device)?;
|
|
Ok(t5::T5ForConditionalGeneration::load(vb, &self.config)?)
|
|
}
|
|
|
|
fn get_local_or_remote_file(filename: &str, api: &ApiRepo) -> Result<PathBuf> {
|
|
let local_filename = std::path::PathBuf::from(filename);
|
|
if local_filename.exists() {
|
|
Ok(local_filename)
|
|
} else {
|
|
Ok(api.get(filename)?)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
use tracing_chrome::ChromeLayerBuilder;
|
|
use tracing_subscriber::prelude::*;
|
|
|
|
let args = Args::parse();
|
|
|
|
let _guard = if args.tracing {
|
|
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
|
tracing_subscriber::registry().with(chrome_layer).init();
|
|
Some(guard)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let (builder, mut tokenizer) = T5ModelBuilder::load(&args)?;
|
|
let device = &builder.device;
|
|
let tokenizer = tokenizer
|
|
.with_padding(None)
|
|
.with_truncation(None)
|
|
.map_err(E::msg)?;
|
|
let tokens = tokenizer
|
|
.encode(args.prompt, true)
|
|
.map_err(E::msg)?
|
|
.get_ids()
|
|
.to_vec();
|
|
let input_token_ids = Tensor::new(&tokens[..], device)?.unsqueeze(0)?;
|
|
let mut model = builder.build_model()?;
|
|
let mut output_token_ids = [builder
|
|
.config
|
|
.decoder_start_token_id
|
|
.unwrap_or(builder.config.pad_token_id) as u32]
|
|
.to_vec();
|
|
let temperature = if args.temperature <= 0. {
|
|
None
|
|
} else {
|
|
Some(args.temperature)
|
|
};
|
|
let mut logits_processor = LogitsProcessor::new(299792458, temperature, args.top_p);
|
|
let encoder_output = model.encode(&input_token_ids)?;
|
|
let start = std::time::Instant::now();
|
|
|
|
for index in 0.. {
|
|
if output_token_ids.len() > 512 {
|
|
break;
|
|
}
|
|
let decoder_token_ids = if index == 0 || !builder.config.use_cache {
|
|
Tensor::new(output_token_ids.as_slice(), device)?.unsqueeze(0)?
|
|
} else {
|
|
let last_token = *output_token_ids.last().unwrap();
|
|
Tensor::new(&[last_token], device)?.unsqueeze(0)?
|
|
};
|
|
let logits = model
|
|
.decode(&decoder_token_ids, &encoder_output)?
|
|
.squeeze(0)?;
|
|
let logits = if args.repeat_penalty == 1. {
|
|
logits
|
|
} else {
|
|
let start_at = output_token_ids.len().saturating_sub(args.repeat_last_n);
|
|
candle_transformers::utils::apply_repeat_penalty(
|
|
&logits,
|
|
args.repeat_penalty,
|
|
&output_token_ids[start_at..],
|
|
)?
|
|
};
|
|
|
|
let next_token_id = logits_processor.sample(&logits)?;
|
|
if next_token_id as usize == builder.config.eos_token_id {
|
|
break;
|
|
}
|
|
output_token_ids.push(next_token_id);
|
|
if let Some(text) = tokenizer.id_to_token(next_token_id) {
|
|
let text = text.replace('▁', " ").replace("<0x0A>", "\n");
|
|
print!("{text}");
|
|
std::io::stdout().flush()?;
|
|
}
|
|
}
|
|
let dt = start.elapsed();
|
|
println!(
|
|
"\n{} tokens generated ({:.2} token/s)\n",
|
|
output_token_ids.len(),
|
|
output_token_ids.len() as f64 / dt.as_secs_f64(),
|
|
);
|
|
Ok(())
|
|
}
|