mirror of
https://github.com/huggingface/candle.git
synced 2025-06-14 09:57:10 +00:00

* Metal quantized modifications proposal. - Add a device param, wherever needed. - Create new QMetal storage thing that implements QuantizedType. - Update everywhere needed. Fix Python. Fixing examples. Fix: fmt + clippy + stub. Moving everything around. Only missing the actual implems. Fixing everything + adding dequantized kernels. More work. Fixing matmul. Fmt + Clippy Some clippy fixes. Working state. Q2K Metal -> Bugged (also present in GGML). Q4K CPU -> Bugged (present previously, new test catch it). Q5K CPU -> Bugged (present previously). Q8_1 Both -> Never really implemented it seems Q8K metal -> Never implemented in metal Fixing Q2K bug (present in ggml). * Cleanup. * Fix the rebase. * Removing the fences speeds everything up and *is* correct this time... * Cleanup the fence. * After rebase. * Bad code removal. * Rebase after phi2 merge + fix replit default to CPU. * Making the CI happy. * More happy tests. --------- Co-authored-by: Nicolas Patry <nicolas@Nicolass-MacBook-Pro.local>
265 lines
7.8 KiB
Rust
265 lines
7.8 KiB
Rust
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
use anyhow::{Error as E, Result};
|
|
use clap::Parser;
|
|
|
|
use candle_transformers::models::mpt::{Config, Model as M};
|
|
use candle_transformers::models::quantized_mpt::Model as Q;
|
|
|
|
use candle::{DType, Device, Tensor};
|
|
use candle_nn::VarBuilder;
|
|
use candle_transformers::generation::LogitsProcessor;
|
|
use hf_hub::{api::sync::Api, Repo, RepoType};
|
|
use tokenizers::Tokenizer;
|
|
|
|
enum Model {
|
|
M(M),
|
|
Q(Q),
|
|
}
|
|
|
|
impl Model {
|
|
fn forward(&mut self, xs: &Tensor) -> candle::Result<Tensor> {
|
|
match self {
|
|
Self::M(model) => model.forward(xs),
|
|
Self::Q(model) => model.forward(xs),
|
|
}
|
|
}
|
|
}
|
|
|
|
struct TextGeneration {
|
|
model: Model,
|
|
device: Device,
|
|
tokenizer: Tokenizer,
|
|
logits_processor: LogitsProcessor,
|
|
repeat_penalty: f32,
|
|
repeat_last_n: usize,
|
|
verbose_prompt: bool,
|
|
}
|
|
|
|
impl TextGeneration {
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn new(
|
|
model: Model,
|
|
tokenizer: Tokenizer,
|
|
seed: u64,
|
|
temp: Option<f64>,
|
|
top_p: Option<f64>,
|
|
repeat_penalty: f32,
|
|
repeat_last_n: usize,
|
|
verbose_prompt: bool,
|
|
device: &Device,
|
|
) -> Self {
|
|
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
|
Self {
|
|
model,
|
|
tokenizer,
|
|
logits_processor,
|
|
repeat_penalty,
|
|
repeat_last_n,
|
|
verbose_prompt,
|
|
device: device.clone(),
|
|
}
|
|
}
|
|
|
|
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
|
use std::io::Write;
|
|
println!("starting the inference loop");
|
|
let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?;
|
|
if tokens.is_empty() {
|
|
anyhow::bail!("Empty prompts are not supported in the phi model.")
|
|
}
|
|
if self.verbose_prompt {
|
|
for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
|
|
let token = token.replace('▁', " ").replace("<0x0A>", "\n");
|
|
println!("{id:7} -> '{token}'");
|
|
}
|
|
}
|
|
let mut tokens = tokens.get_ids().to_vec();
|
|
let mut generated_tokens = 0usize;
|
|
let eos_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") {
|
|
Some(token) => *token,
|
|
None => anyhow::bail!("cannot find the endoftext token"),
|
|
};
|
|
print!("{prompt}");
|
|
std::io::stdout().flush()?;
|
|
let start_gen = std::time::Instant::now();
|
|
for index in 0..sample_len {
|
|
let context_size = if index > 0 { 1 } else { tokens.len() };
|
|
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
|
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
|
let logits = self.model.forward(&input)?;
|
|
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
|
|
let logits = if self.repeat_penalty == 1. {
|
|
logits
|
|
} else {
|
|
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
|
candle_transformers::utils::apply_repeat_penalty(
|
|
&logits,
|
|
self.repeat_penalty,
|
|
&tokens[start_at..],
|
|
)?
|
|
};
|
|
|
|
let next_token = self.logits_processor.sample(&logits)?;
|
|
tokens.push(next_token);
|
|
generated_tokens += 1;
|
|
if next_token == eos_token {
|
|
break;
|
|
}
|
|
let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
|
|
print!("{token}");
|
|
std::io::stdout().flush()?;
|
|
}
|
|
let dt = start_gen.elapsed();
|
|
println!(
|
|
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
|
generated_tokens as f64 / dt.as_secs_f64(),
|
|
);
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// Enable tracing (generates a trace-timestamp.json file).
|
|
#[arg(long)]
|
|
tracing: bool,
|
|
|
|
/// Display the token for the specified prompt.
|
|
#[arg(long)]
|
|
verbose_prompt: bool,
|
|
|
|
#[arg(long)]
|
|
prompt: String,
|
|
|
|
/// The temperature used to generate samples.
|
|
#[arg(long)]
|
|
temperature: Option<f64>,
|
|
|
|
/// Nucleus sampling probability cutoff.
|
|
#[arg(long)]
|
|
top_p: Option<f64>,
|
|
|
|
/// The seed to use when generating random samples.
|
|
#[arg(long, default_value_t = 299792458)]
|
|
seed: u64,
|
|
|
|
/// The length of the sample to generate (in tokens).
|
|
#[arg(long, short = 'n', default_value_t = 1000)]
|
|
sample_len: usize,
|
|
|
|
#[arg(long)]
|
|
model_id: Option<String>,
|
|
|
|
#[arg(long)]
|
|
revision: Option<String>,
|
|
|
|
#[arg(long)]
|
|
quantized: bool,
|
|
|
|
#[arg(long)]
|
|
weight_file: Option<String>,
|
|
|
|
#[arg(long)]
|
|
tokenizer: Option<String>,
|
|
|
|
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
|
#[arg(long, default_value_t = 1.)]
|
|
repeat_penalty: f32,
|
|
|
|
/// The context size to consider for the repeat penalty.
|
|
#[arg(long, default_value_t = 64)]
|
|
repeat_last_n: usize,
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
use tracing_chrome::ChromeLayerBuilder;
|
|
use tracing_subscriber::prelude::*;
|
|
|
|
let args = Args::parse();
|
|
let _guard = if args.tracing {
|
|
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
|
tracing_subscriber::registry().with(chrome_layer).init();
|
|
Some(guard)
|
|
} else {
|
|
None
|
|
};
|
|
println!(
|
|
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
|
candle::utils::with_avx(),
|
|
candle::utils::with_neon(),
|
|
candle::utils::with_simd128(),
|
|
candle::utils::with_f16c()
|
|
);
|
|
println!(
|
|
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
|
args.temperature.unwrap_or(0.),
|
|
args.repeat_penalty,
|
|
args.repeat_last_n
|
|
);
|
|
|
|
let start = std::time::Instant::now();
|
|
let api = Api::new()?;
|
|
let model_id = match args.model_id {
|
|
Some(model_id) => model_id.to_string(),
|
|
None => "lmz/candle-replit-code".to_string(),
|
|
};
|
|
let revision = match args.revision {
|
|
Some(rev) => rev.to_string(),
|
|
None => "main".to_string(),
|
|
};
|
|
let repo = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
|
|
let tokenizer_filename = match args.tokenizer {
|
|
Some(file) => std::path::PathBuf::from(file),
|
|
None => repo.get("tokenizer.json")?,
|
|
};
|
|
let filename = match args.weight_file {
|
|
Some(weight_file) => std::path::PathBuf::from(weight_file),
|
|
None => {
|
|
if args.quantized {
|
|
repo.get("model-replit-code-v1_5-q4k.gguf")?
|
|
} else {
|
|
repo.get("model.safetensors")?
|
|
}
|
|
}
|
|
};
|
|
println!("retrieved the files in {:?}", start.elapsed());
|
|
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
|
|
|
let start = std::time::Instant::now();
|
|
let device = candle_examples::device(args.cpu)?;
|
|
let config = Config::replit_code_v1_5_3b();
|
|
let model = if args.quantized {
|
|
let vb =
|
|
candle_transformers::quantized_var_builder::VarBuilder::from_gguf(&filename, &device)?;
|
|
Model::Q(Q::new(&config, vb.pp("transformer"))?)
|
|
} else {
|
|
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[filename], DType::F32, &device)? };
|
|
Model::M(M::new(&config, vb.pp("transformer"))?)
|
|
};
|
|
println!("loaded the model in {:?}", start.elapsed());
|
|
|
|
let mut pipeline = TextGeneration::new(
|
|
model,
|
|
tokenizer,
|
|
args.seed,
|
|
args.temperature,
|
|
args.top_p,
|
|
args.repeat_penalty,
|
|
args.repeat_last_n,
|
|
args.verbose_prompt,
|
|
&device,
|
|
);
|
|
pipeline.run(&args.prompt, args.sample_len)?;
|
|
Ok(())
|
|
}
|