Files
2024-04-15 06:50:32 +02:00

155 lines
4.6 KiB
Rust

#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::Error as E;
use clap::{Parser, ValueEnum};
use candle::{DType, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::models::{trocr, vit};
use tokenizers::Tokenizer;
mod image_processor;
#[derive(Clone, Debug, Copy, ValueEnum)]
enum Which {
#[value(name = "base")]
BaseHandwritten,
#[value(name = "large")]
LargeHandwritten,
BasePrinted,
LargePrinted,
}
impl Which {
fn repo_and_branch_name(&self) -> (&str, &str) {
match self {
Self::BaseHandwritten => ("microsoft/trocr-base-handwritten", "refs/pr/3"),
Self::LargeHandwritten => ("microsoft/trocr-large-handwritten", "refs/pr/6"),
Self::BasePrinted => ("microsoft/trocr-base-printed", "refs/pr/7"),
Self::LargePrinted => ("microsoft/trocr-large-printed", "main"),
}
}
}
#[derive(Debug, Clone, serde::Deserialize)]
struct Config {
encoder: vit::Config,
decoder: trocr::TrOCRConfig,
}
#[derive(Parser, Debug)]
struct Args {
#[arg(long)]
model: Option<String>,
/// Choose the variant of the model to run.
#[arg(long, default_value = "base")]
which: Which,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// The image file to be processed.
#[arg(long)]
image: String,
/// Tokenization config.
#[arg(long)]
tokenizer: Option<String>,
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let api = hf_hub::api::sync::Api::new()?;
let mut tokenizer_dec = {
let tokenizer_file = match args.tokenizer {
None => api
.model(String::from("ToluClassics/candle-trocr-tokenizer"))
.get("tokenizer.json")?,
Some(tokenizer) => std::path::PathBuf::from(tokenizer),
};
let tokenizer = Tokenizer::from_file(&tokenizer_file).map_err(E::msg)?;
TokenOutputStream::new(tokenizer)
};
let device = candle_examples::device(args.cpu)?;
let vb = {
let model = match args.model {
Some(model) => std::path::PathBuf::from(model),
None => {
let (repo, branch) = args.which.repo_and_branch_name();
api.repo(hf_hub::Repo::with_revision(
repo.to_string(),
hf_hub::RepoType::Model,
branch.to_string(),
))
.get("model.safetensors")?
}
};
println!("model: {:?}", model);
unsafe { VarBuilder::from_mmaped_safetensors(&[model], DType::F32, &device)? }
};
let (encoder_config, decoder_config) = {
let (repo, branch) = args.which.repo_and_branch_name();
let config_filename = api
.repo(hf_hub::Repo::with_revision(
repo.to_string(),
hf_hub::RepoType::Model,
branch.to_string(),
))
.get("config.json")?;
let config: Config = serde_json::from_reader(std::fs::File::open(config_filename)?)?;
(config.encoder, config.decoder)
};
let mut model = trocr::TrOCRModel::new(&encoder_config, &decoder_config, vb)?;
let processor_config = image_processor::ProcessorConfig::default();
let processor = image_processor::ViTImageProcessor::new(&processor_config);
let image = vec![args.image.as_str()];
let image = processor.preprocess(image)?.to_device(&device)?;
let encoder_xs = model.encoder().forward(&image)?;
let mut logits_processor =
candle_transformers::generation::LogitsProcessor::new(1337, None, None);
let mut token_ids: Vec<u32> = vec![decoder_config.decoder_start_token_id];
for index in 0..1000 {
let context_size = if index >= 1 { 1 } else { token_ids.len() };
let start_pos = token_ids.len().saturating_sub(context_size);
let input_ids = Tensor::new(&token_ids[start_pos..], &device)?.unsqueeze(0)?;
let logits = model.decode(&input_ids, &encoder_xs, start_pos)?;
let logits = logits.squeeze(0)?;
let logits = logits.get(logits.dim(0)? - 1)?;
let token = logits_processor.sample(&logits)?;
token_ids.push(token);
if let Some(t) = tokenizer_dec.next_token(token)? {
use std::io::Write;
print!("{t}");
std::io::stdout().flush()?;
}
if token == decoder_config.eos_token_id {
break;
}
}
if let Some(rest) = tokenizer_dec.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
println!();
Ok(())
}