mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 02:16:37 +00:00
candle-xlm-roberta
This example demonstrates how to use the XLM-RoBERTa model in Candle especially known for their use in reranking. It uses the fill-mask
task to generate a word for a masked token. And a reranker
task to rerank a list of documents for a given query.
Usage
Fill Mask:
cargo run --example xlm-roberta --release -- --task fill-mask --model xlm-roberta-base
Sentence: 0 : Hello I'm a fashion model.
Sentence: 1 : I'm a little boy.
Sentence: 2 : I'm living in berlin.
Reranker:
cargo run --example xlm-roberta --release -- --task reranker --model bge-reranker-base
Ranking Results:
--------------------------------------------------------------------------------
> Rank #4 | Score: 0.0001 | South Korea is a country in East Asia.
> Rank #5 | Score: 0.0000 | There are forests in the mountains.
> Rank #2 | Score: 0.7314 | Pandas look like bears.
> Rank #3 | Score: 0.6948 | There are some animals with black and white fur.
> Rank #1 | Score: 0.9990 | The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.
--------------------------------------------------------------------------------
Text-Classification:
cargo run --example xlm-roberta -- --task text-classification --model xlmr-formality-classifier
Formality Scores:
Text 1: "I like you. I love you"
formal: 0.9933
informal: 0.0067
Text 2: "Hey, what's up?"
formal: 0.8812
informal: 0.1188
Text 3: "Siema, co porabiasz?"
formal: 0.9358
informal: 0.0642
Text 4: "I feel deep regret and sadness about the situation in international politics."
formal: 0.9987
informal: 0.0013