mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 10:26:33 +00:00
182 lines
6.9 KiB
Rust
182 lines
6.9 KiB
Rust
#[cfg(feature = "metal")]
|
|
mod metal_sdpa_tests {
|
|
use candle::{DType, Device, Result, Shape, Tensor};
|
|
use rand::SeedableRng;
|
|
use rand_distr::Distribution;
|
|
use std::ops::{Div, Mul};
|
|
|
|
fn randn<S: Into<Shape>>(
|
|
rng: &mut rand::rngs::StdRng,
|
|
shape: S,
|
|
dev: &Device,
|
|
) -> Result<Tensor> {
|
|
let shape = shape.into();
|
|
let elem_count = shape.elem_count();
|
|
let normal = rand_distr::Normal::new(0.0, 1.0).unwrap();
|
|
let vs: Vec<f32> = (0..elem_count).map(|_| normal.sample(rng)).collect();
|
|
Tensor::from_vec(vs, &shape, dev)
|
|
}
|
|
|
|
#[test]
|
|
fn sdpa_full() -> Result<()> {
|
|
// Force seqlen = 100
|
|
const BS: usize = 4;
|
|
const R: usize = 4;
|
|
const L: usize = 4;
|
|
const DK: usize = 64;
|
|
const H: usize = 3;
|
|
|
|
let scale: f64 = f64::from(DK as u32).sqrt().recip();
|
|
let device = Device::new_metal(0)?;
|
|
let mut rng = rand::rngs::StdRng::seed_from_u64(42);
|
|
let q = randn(&mut rng, (BS, H, R, DK), &device)?;
|
|
let k = randn(&mut rng, (BS, H, L, DK), &device)?;
|
|
let v = randn(&mut rng, (BS, H, L, DK), &device)?;
|
|
let ground_truth = {
|
|
let att = (q.clone() * scale)?.matmul(&k.clone().t()?)?;
|
|
let att = candle_nn::ops::softmax_last_dim(&att.to_dtype(DType::F32)?)?
|
|
.to_dtype(q.dtype())?;
|
|
att.matmul(&v.clone())?
|
|
};
|
|
let sdpa_output = candle_nn::ops::sdpa(&q, &k, &v, scale as f32, 1.)?;
|
|
assert_eq!(ground_truth.shape(), sdpa_output.shape());
|
|
let error: f32 = ((&ground_truth - &sdpa_output)?.abs()? / &ground_truth.abs()?)?
|
|
.sum_all()?
|
|
.to_scalar()?;
|
|
assert!(error <= 0.0004, "{}", error);
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn sdpa_vector() -> Result<()> {
|
|
// Allow vectorized, seqlen = 1
|
|
const BS: usize = 4;
|
|
const R: usize = 1;
|
|
const L: usize = 1;
|
|
const DK: usize = 64;
|
|
const H: usize = 3;
|
|
|
|
let scale: f64 = f64::from(DK as u32).sqrt().recip();
|
|
let device = Device::new_metal(0)?;
|
|
let mut rng = rand::rngs::StdRng::seed_from_u64(4242);
|
|
let q = randn(&mut rng, (BS, H, R, DK), &device)?;
|
|
let k = randn(&mut rng, (BS, H, L, DK), &device)?;
|
|
let v = randn(&mut rng, (BS, H, L, DK), &device)?;
|
|
let ground_truth = {
|
|
let att = (q.clone() * scale)?.matmul(&k.clone().t()?)?;
|
|
let att = candle_nn::ops::softmax_last_dim(&att.to_dtype(DType::F32)?)?
|
|
.to_dtype(q.dtype())?;
|
|
att.matmul(&v.clone())?
|
|
};
|
|
let sdpa_output = candle_nn::ops::sdpa(&q, &k, &v, scale as f32, 1.)?;
|
|
assert_eq!(ground_truth.shape(), sdpa_output.shape());
|
|
let error: f32 = ((&ground_truth - &sdpa_output)?.abs()? / &ground_truth.abs()?)?
|
|
.sum_all()?
|
|
.to_scalar()?;
|
|
assert!(error <= 0.000, "{}", error);
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn sdpa_full_softcapping() -> Result<()> {
|
|
// Allow vectorized, seqlen = 1
|
|
const BS: usize = 4;
|
|
const R: usize = 4;
|
|
const L: usize = 4;
|
|
const DK: usize = 64;
|
|
const H: usize = 3;
|
|
const SOFTCAP: f64 = 50.;
|
|
|
|
let scale: f64 = f64::from(DK as u32).sqrt().recip();
|
|
let device = Device::new_metal(0)?;
|
|
let mut rng = rand::rngs::StdRng::seed_from_u64(424242);
|
|
let q = randn(&mut rng, (BS, H, R, DK), &device)?;
|
|
let k = randn(&mut rng, (BS, H, L, DK), &device)?;
|
|
let v = randn(&mut rng, (BS, H, L, DK), &device)?;
|
|
let ground_truth = {
|
|
let att = (q.clone() * scale)?.matmul(&k.clone().t()?)?;
|
|
let att = candle_nn::ops::softmax_last_dim(
|
|
&att.to_dtype(DType::F32)?
|
|
.div(SOFTCAP)?
|
|
.tanh()?
|
|
.mul(SOFTCAP)?,
|
|
)?
|
|
.to_dtype(q.dtype())?;
|
|
att.matmul(&v.clone())?
|
|
};
|
|
let sdpa_output = candle_nn::ops::sdpa(&q, &k, &v, scale as f32, SOFTCAP as f32)?;
|
|
assert_eq!(ground_truth.shape(), sdpa_output.shape());
|
|
let error: f32 = ((&ground_truth - &sdpa_output)?.abs()? / &ground_truth.abs()?)?
|
|
.sum_all()?
|
|
.to_scalar()?;
|
|
assert!(error <= 0.0005, "{}", error);
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn sdpa_vector_softcapping() -> Result<()> {
|
|
// Allow vectorized, seqlen = 1
|
|
const BS: usize = 4;
|
|
const R: usize = 1;
|
|
const L: usize = 1;
|
|
const DK: usize = 64;
|
|
const H: usize = 3;
|
|
const SOFTCAP: f64 = 50.;
|
|
|
|
let scale: f64 = f64::from(DK as u32).sqrt().recip();
|
|
let device = Device::new_metal(0)?;
|
|
let mut rng = rand::rngs::StdRng::seed_from_u64(42424242);
|
|
let q = randn(&mut rng, (BS, H, R, DK), &device)?;
|
|
let k = randn(&mut rng, (BS, H, L, DK), &device)?;
|
|
let v = randn(&mut rng, (BS, H, L, DK), &device)?;
|
|
let ground_truth = {
|
|
let att = (q.clone() * scale)?.matmul(&k.clone().t()?)?;
|
|
let att = candle_nn::ops::softmax_last_dim(
|
|
&att.to_dtype(DType::F32)?
|
|
.div(SOFTCAP)?
|
|
.tanh()?
|
|
.mul(SOFTCAP)?,
|
|
)?
|
|
.to_dtype(q.dtype())?;
|
|
att.matmul(&v.clone())?
|
|
};
|
|
let sdpa_output = candle_nn::ops::sdpa(&q, &k, &v, scale as f32, SOFTCAP as f32)?;
|
|
assert_eq!(ground_truth.shape(), sdpa_output.shape());
|
|
let error: f32 = ((&ground_truth - &sdpa_output)?.abs()? / &ground_truth.abs()?)?
|
|
.sum_all()?
|
|
.to_scalar()?;
|
|
assert!(error <= 0.0001, "{}", error);
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn sdpa_vector_cross() -> Result<()> {
|
|
// Allow vectorized, seqlen = 1. Simulat cross attention case where R != L, R = 1
|
|
const BS: usize = 4;
|
|
const R: usize = 1;
|
|
const L: usize = 24;
|
|
const DK: usize = 64;
|
|
const H: usize = 3;
|
|
|
|
let scale: f64 = f64::from(DK as u32).sqrt().recip();
|
|
let device = Device::new_metal(0)?;
|
|
let mut rng = rand::rngs::StdRng::seed_from_u64(4242424242);
|
|
let q = randn(&mut rng, (BS, H, R, DK), &device)?;
|
|
let k = randn(&mut rng, (BS, H, L, DK), &device)?;
|
|
let v = randn(&mut rng, (BS, H, L, DK), &device)?;
|
|
let ground_truth = {
|
|
let att = (q.clone() * scale)?.matmul(&k.clone().t()?)?;
|
|
let att = candle_nn::ops::softmax_last_dim(&att.to_dtype(DType::F32)?)?
|
|
.to_dtype(q.dtype())?;
|
|
att.matmul(&v.clone())?
|
|
};
|
|
let sdpa_output = candle_nn::ops::sdpa(&q, &k, &v, scale as f32, 1.)?;
|
|
assert_eq!(ground_truth.shape(), sdpa_output.shape());
|
|
let error: f32 = ((&ground_truth - &sdpa_output)?.abs()? / &ground_truth.abs()?)?
|
|
.sum_all()?
|
|
.to_scalar()?;
|
|
assert!(error <= 0.0013, "{}", error);
|
|
Ok(())
|
|
}
|
|
}
|