mirror of
https://github.com/huggingface/candle.git
synced 2025-06-14 09:57:10 +00:00

* qwen-moe rebase * lint * fixed rebase error * swapped normal MoE model with CausalMoE Model in example, and swapped the tie word embeddings if statement * updated readme
369 lines
11 KiB
Rust
369 lines
11 KiB
Rust
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
use anyhow::{Error as E, Result};
|
|
use clap::Parser;
|
|
|
|
use candle_transformers::models::qwen2::{Config as ConfigBase, ModelForCausalLM as ModelBase};
|
|
use candle_transformers::models::qwen2_moe::{Config as ConfigMoe, Model as ModelMoe};
|
|
use candle_transformers::models::qwen3::{Config as Config3, ModelForCausalLM as Model3};
|
|
use candle_transformers::models::qwen3_moe::{Config as ConfigMoe3, ModelForCausalLM as ModelMoe3};
|
|
|
|
use candle::{DType, Device, Tensor};
|
|
use candle_examples::token_output_stream::TokenOutputStream;
|
|
use candle_nn::VarBuilder;
|
|
use candle_transformers::generation::LogitsProcessor;
|
|
use hf_hub::{api::sync::Api, Repo, RepoType};
|
|
use tokenizers::Tokenizer;
|
|
|
|
enum Model {
|
|
Base(ModelBase),
|
|
Moe(ModelMoe),
|
|
Base3(Model3),
|
|
Moe3(ModelMoe3),
|
|
}
|
|
|
|
impl Model {
|
|
fn forward(&mut self, xs: &Tensor, s: usize) -> candle::Result<Tensor> {
|
|
match self {
|
|
Self::Moe(ref mut m) => m.forward(xs, s),
|
|
Self::Base(ref mut m) => m.forward(xs, s),
|
|
Self::Base3(ref mut m) => m.forward(xs, s),
|
|
Self::Moe3(ref mut m) => m.forward(xs, s),
|
|
}
|
|
}
|
|
}
|
|
|
|
struct TextGeneration {
|
|
model: Model,
|
|
device: Device,
|
|
tokenizer: TokenOutputStream,
|
|
logits_processor: LogitsProcessor,
|
|
repeat_penalty: f32,
|
|
repeat_last_n: usize,
|
|
}
|
|
|
|
impl TextGeneration {
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn new(
|
|
model: Model,
|
|
tokenizer: Tokenizer,
|
|
seed: u64,
|
|
temp: Option<f64>,
|
|
top_p: Option<f64>,
|
|
repeat_penalty: f32,
|
|
repeat_last_n: usize,
|
|
device: &Device,
|
|
) -> Self {
|
|
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
|
Self {
|
|
model,
|
|
tokenizer: TokenOutputStream::new(tokenizer),
|
|
logits_processor,
|
|
repeat_penalty,
|
|
repeat_last_n,
|
|
device: device.clone(),
|
|
}
|
|
}
|
|
|
|
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
|
use std::io::Write;
|
|
self.tokenizer.clear();
|
|
let mut tokens = self
|
|
.tokenizer
|
|
.tokenizer()
|
|
.encode(prompt, true)
|
|
.map_err(E::msg)?
|
|
.get_ids()
|
|
.to_vec();
|
|
for &t in tokens.iter() {
|
|
if let Some(t) = self.tokenizer.next_token(t)? {
|
|
print!("{t}")
|
|
}
|
|
}
|
|
std::io::stdout().flush()?;
|
|
|
|
let mut generated_tokens = 0usize;
|
|
let eos_token = match self.tokenizer.get_token("<|endoftext|>") {
|
|
Some(token) => token,
|
|
None => anyhow::bail!("cannot find the <|endoftext|> token"),
|
|
};
|
|
let eos_token2 = match self.tokenizer.get_token("<|im_end|>") {
|
|
Some(token) => token,
|
|
None => anyhow::bail!("cannot find the <|im_end|> token"),
|
|
};
|
|
let start_gen = std::time::Instant::now();
|
|
for index in 0..sample_len {
|
|
let context_size = if index > 0 { 1 } else { tokens.len() };
|
|
let start_pos = tokens.len().saturating_sub(context_size);
|
|
let ctxt = &tokens[start_pos..];
|
|
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
|
let logits = self.model.forward(&input, start_pos)?;
|
|
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
|
let logits = if self.repeat_penalty == 1. {
|
|
logits
|
|
} else {
|
|
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
|
candle_transformers::utils::apply_repeat_penalty(
|
|
&logits,
|
|
self.repeat_penalty,
|
|
&tokens[start_at..],
|
|
)?
|
|
};
|
|
|
|
let next_token = self.logits_processor.sample(&logits)?;
|
|
tokens.push(next_token);
|
|
generated_tokens += 1;
|
|
if next_token == eos_token || next_token == eos_token2 {
|
|
break;
|
|
}
|
|
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
|
print!("{t}");
|
|
std::io::stdout().flush()?;
|
|
}
|
|
}
|
|
let dt = start_gen.elapsed();
|
|
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
|
|
print!("{rest}");
|
|
}
|
|
std::io::stdout().flush()?;
|
|
println!(
|
|
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
|
generated_tokens as f64 / dt.as_secs_f64(),
|
|
);
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug, clap::ValueEnum, PartialEq, Eq)]
|
|
enum WhichModel {
|
|
#[value(name = "0.5b")]
|
|
W0_5b,
|
|
#[value(name = "1.8b")]
|
|
W1_8b,
|
|
#[value(name = "4b")]
|
|
W4b,
|
|
#[value(name = "7b")]
|
|
W7b,
|
|
#[value(name = "14b")]
|
|
W14b,
|
|
#[value(name = "72b")]
|
|
W72b,
|
|
#[value(name = "moe-a2.7b")]
|
|
MoeA27b,
|
|
#[value(name = "2-0.5b")]
|
|
W2_0_5b,
|
|
#[value(name = "2-1.5b")]
|
|
W2_1_5b,
|
|
#[value(name = "2-7b")]
|
|
W2_7b,
|
|
#[value(name = "2-72b")]
|
|
W2_72b,
|
|
#[value(name = "3-0.6b")]
|
|
W3_0_6b,
|
|
#[value(name = "3-1.7b")]
|
|
W3_1_7b,
|
|
#[value(name = "3-4b")]
|
|
W3_4b,
|
|
#[value(name = "3-8b")]
|
|
W3_8b,
|
|
#[value(name = "3-moe-a3b")]
|
|
W3MoeA3b,
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// Enable tracing (generates a trace-timestamp.json file).
|
|
#[arg(long)]
|
|
tracing: bool,
|
|
|
|
#[arg(long)]
|
|
use_flash_attn: bool,
|
|
|
|
#[arg(long)]
|
|
prompt: String,
|
|
|
|
/// The temperature used to generate samples.
|
|
#[arg(long)]
|
|
temperature: Option<f64>,
|
|
|
|
/// Nucleus sampling probability cutoff.
|
|
#[arg(long)]
|
|
top_p: Option<f64>,
|
|
|
|
/// The seed to use when generating random samples.
|
|
#[arg(long, default_value_t = 299792458)]
|
|
seed: u64,
|
|
|
|
/// The length of the sample to generate (in tokens).
|
|
#[arg(long, short = 'n', default_value_t = 10000)]
|
|
sample_len: usize,
|
|
|
|
#[arg(long)]
|
|
model_id: Option<String>,
|
|
|
|
#[arg(long, default_value = "main")]
|
|
revision: String,
|
|
|
|
#[arg(long)]
|
|
tokenizer_file: Option<String>,
|
|
|
|
#[arg(long)]
|
|
weight_files: Option<String>,
|
|
|
|
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
|
#[arg(long, default_value_t = 1.1)]
|
|
repeat_penalty: f32,
|
|
|
|
/// The context size to consider for the repeat penalty.
|
|
#[arg(long, default_value_t = 64)]
|
|
repeat_last_n: usize,
|
|
|
|
#[arg(long, default_value = "0.5b")]
|
|
model: WhichModel,
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
use tracing_chrome::ChromeLayerBuilder;
|
|
use tracing_subscriber::prelude::*;
|
|
|
|
let args = Args::parse();
|
|
let _guard = if args.tracing {
|
|
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
|
tracing_subscriber::registry().with(chrome_layer).init();
|
|
Some(guard)
|
|
} else {
|
|
None
|
|
};
|
|
println!(
|
|
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
|
candle::utils::with_avx(),
|
|
candle::utils::with_neon(),
|
|
candle::utils::with_simd128(),
|
|
candle::utils::with_f16c()
|
|
);
|
|
println!(
|
|
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
|
args.temperature.unwrap_or(0.),
|
|
args.repeat_penalty,
|
|
args.repeat_last_n
|
|
);
|
|
|
|
let start = std::time::Instant::now();
|
|
let api = Api::new()?;
|
|
let model_id = match args.model_id {
|
|
Some(model_id) => model_id,
|
|
None => {
|
|
let (version, size) = match args.model {
|
|
WhichModel::W2_0_5b => ("2", "0.5B"),
|
|
WhichModel::W2_1_5b => ("2", "1.5B"),
|
|
WhichModel::W2_7b => ("2", "7B"),
|
|
WhichModel::W2_72b => ("2", "72B"),
|
|
WhichModel::W0_5b => ("1.5", "0.5B"),
|
|
WhichModel::W1_8b => ("1.5", "1.8B"),
|
|
WhichModel::W4b => ("1.5", "4B"),
|
|
WhichModel::W7b => ("1.5", "7B"),
|
|
WhichModel::W14b => ("1.5", "14B"),
|
|
WhichModel::W72b => ("1.5", "72B"),
|
|
WhichModel::MoeA27b => ("1.5", "MoE-A2.7B"),
|
|
WhichModel::W3_0_6b => ("3", "0.6B"),
|
|
WhichModel::W3_1_7b => ("3", "1.7B"),
|
|
WhichModel::W3_4b => ("3", "4B"),
|
|
WhichModel::W3_8b => ("3", "8B"),
|
|
WhichModel::W3MoeA3b => ("3", "30B-A3B"),
|
|
};
|
|
format!("Qwen/Qwen{version}-{size}")
|
|
}
|
|
};
|
|
let repo = api.repo(Repo::with_revision(
|
|
model_id,
|
|
RepoType::Model,
|
|
args.revision,
|
|
));
|
|
let tokenizer_filename = match args.tokenizer_file {
|
|
Some(file) => std::path::PathBuf::from(file),
|
|
None => repo.get("tokenizer.json")?,
|
|
};
|
|
let filenames = match args.weight_files {
|
|
Some(files) => files
|
|
.split(',')
|
|
.map(std::path::PathBuf::from)
|
|
.collect::<Vec<_>>(),
|
|
None => match args.model {
|
|
WhichModel::W0_5b
|
|
| WhichModel::W2_0_5b
|
|
| WhichModel::W2_1_5b
|
|
| WhichModel::W1_8b
|
|
| WhichModel::W3_0_6b => {
|
|
vec![repo.get("model.safetensors")?]
|
|
}
|
|
WhichModel::W4b
|
|
| WhichModel::W7b
|
|
| WhichModel::W2_7b
|
|
| WhichModel::W14b
|
|
| WhichModel::W72b
|
|
| WhichModel::W2_72b
|
|
| WhichModel::MoeA27b
|
|
| WhichModel::W3_1_7b
|
|
| WhichModel::W3_4b
|
|
| WhichModel::W3_8b
|
|
| WhichModel::W3MoeA3b => {
|
|
candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?
|
|
}
|
|
},
|
|
};
|
|
println!("retrieved the files in {:?}", start.elapsed());
|
|
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
|
|
|
let start = std::time::Instant::now();
|
|
let config_file = repo.get("config.json")?;
|
|
let device = candle_examples::device(args.cpu)?;
|
|
let dtype = if device.is_cuda() {
|
|
DType::BF16
|
|
} else {
|
|
DType::F32
|
|
};
|
|
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
|
let model = match args.model {
|
|
WhichModel::MoeA27b => {
|
|
let config: ConfigMoe = serde_json::from_slice(&std::fs::read(config_file)?)?;
|
|
Model::Moe(ModelMoe::new(&config, vb)?)
|
|
}
|
|
WhichModel::W3_0_6b | WhichModel::W3_1_7b | WhichModel::W3_4b | WhichModel::W3_8b => {
|
|
let config: Config3 = serde_json::from_slice(&std::fs::read(config_file)?)?;
|
|
Model::Base3(Model3::new(&config, vb)?)
|
|
}
|
|
WhichModel::W3MoeA3b => {
|
|
let config: ConfigMoe3 = serde_json::from_slice(&std::fs::read(config_file)?)?;
|
|
Model::Moe3(ModelMoe3::new(&config, vb)?)
|
|
}
|
|
_ => {
|
|
let config: ConfigBase = serde_json::from_slice(&std::fs::read(config_file)?)?;
|
|
Model::Base(ModelBase::new(&config, vb)?)
|
|
}
|
|
};
|
|
|
|
println!("loaded the model in {:?}", start.elapsed());
|
|
|
|
let mut pipeline = TextGeneration::new(
|
|
model,
|
|
tokenizer,
|
|
args.seed,
|
|
args.temperature,
|
|
args.top_p,
|
|
args.repeat_penalty,
|
|
args.repeat_last_n,
|
|
&device,
|
|
);
|
|
pipeline.run(&args.prompt, args.sample_len)?;
|
|
Ok(())
|
|
}
|