Files
candle/candle-core/tests/tensor_tests.rs
2023-06-28 08:33:43 +01:00

291 lines
9.9 KiB
Rust

mod test_utils;
use candle::{DType, Device, Result, Tensor};
use test_utils::to_vec3_round;
fn zeros(device: &Device) -> Result<()> {
let tensor = Tensor::zeros((5, 2), DType::F32, device)?;
let (dim1, dim2) = tensor.shape().r2()?;
assert_eq!(dim1, 5);
assert_eq!(dim2, 2);
Ok(())
}
fn add_mul(device: &Device) -> Result<()> {
let tensor = Tensor::new(&[3f32, 1., 4.], device)?;
let dim1 = tensor.shape().r1()?;
assert_eq!(dim1, 3);
let content: Vec<f32> = tensor.to_vec1()?;
assert_eq!(content, [3., 1., 4.]);
let tensor = Tensor::add(&tensor, &tensor)?;
let content: Vec<f32> = tensor.to_vec1()?;
assert_eq!(content, [6., 2., 8.]);
let tensor = Tensor::mul(&tensor, &tensor)?;
let content: Vec<f32> = tensor.to_vec1()?;
assert_eq!(content, [36., 4., 64.]);
Ok(())
}
fn tensor_2d(device: &Device) -> Result<()> {
let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]];
let tensor = Tensor::new(data, device)?;
let dims = tensor.shape().r2()?;
assert_eq!(dims, (2, 5));
let content: Vec<Vec<f32>> = tensor.to_vec2()?;
assert_eq!(content, data);
Ok(())
}
fn binary_op(device: &Device) -> Result<()> {
let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]];
let tensor = Tensor::new(data, device)?;
let data2 = &[[5f32, 5., 5., 5., 5.], [2., 1., 7., 8., 2.]];
let tensor2 = Tensor::new(data2, device)?;
let tensor = (&tensor + (&tensor * &tensor)? / (&tensor + &tensor2))?;
let dims = tensor.shape().r2()?;
assert_eq!(dims, (2, 5));
let content: Vec<Vec<f32>> = tensor.to_vec2()?;
assert_eq!(content[0], [4.125, 1.1666666, 5.7777777, 1.1666666, 7.5]);
assert_eq!(content[1], [3.0, 1.5, 10.5, 12.0, 3.0]);
#[allow(clippy::eq_op)]
let tensor = (&tensor - &tensor)?;
let content: Vec<Vec<f32>> = tensor.to_vec2()?;
assert_eq!(content[0], [0., 0., 0., 0., 0.]);
Ok(())
}
fn transpose(device: &Device) -> Result<()> {
let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]];
let tensor = Tensor::new(data, device)?.t()?;
let dims = tensor.shape().r2()?;
assert_eq!(dims, (5, 2));
assert_eq!(
tensor.to_vec2::<f32>()?,
&[[3f32, 2.], [1., 1.], [4., 7.], [1., 8.], [5., 2.]]
);
assert_eq!(tensor.t()?.to_vec2::<f32>()?, data);
assert_eq!(tensor.contiguous()?.t()?.to_vec2::<f32>()?, data);
assert_eq!(((tensor + 1.)?.t()? - 1.)?.to_vec2::<f32>()?, data);
Ok(())
}
fn softmax(device: &Device) -> Result<()> {
let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]];
let tensor = Tensor::new(data, device)?;
let t0 = tensor.log()?.softmax(0)?;
let t1 = tensor.log()?.softmax(1)?;
let t2 = tensor.log()?.softmax(2)?;
assert_eq!(
to_vec3_round(t0, 4)?,
&[
// 3/5, 1/2, 4/11
[[0.6, 0.5, 0.3636], [0.1111, 0.7143, 0.5294]],
// 2/5, 1/2, 7/11
[[0.4, 0.5, 0.6364], [0.8889, 0.2857, 0.4706]]
]
);
assert_eq!(
to_vec3_round(t1, 4)?,
&[
// 3/4, 1/6, 4/13
[[0.75, 0.1667, 0.3077], [0.25, 0.8333, 0.6923]],
// 2/10, 1/3, 7/15
[[0.2, 0.3333, 0.4667], [0.8, 0.6667, 0.5333]]
]
);
assert_eq!(
to_vec3_round(t2, 4)?,
&[
// (3, 1, 4) / 8, (1, 5, 9) / 15
[[0.375, 0.125, 0.5], [0.0667, 0.3333, 0.6]],
// (2, 1, 7) / 10, (8, 2, 8) / 18
[[0.2, 0.1, 0.7], [0.4444, 0.1111, 0.4444]]
]
);
Ok(())
}
fn sum(device: &Device) -> Result<()> {
let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]];
let tensor = Tensor::new(data, device)?;
assert_eq!(
tensor.sum(&[2])?.to_vec3::<u32>()?,
&[[[8], [15]], [[10], [18]]]
);
assert_eq!(
tensor.sum(&[0])?.to_vec3::<u32>()?,
&[[[5, 2, 11], [9, 7, 17]]],
);
assert_eq!(tensor.sum(&[0, 2, 1])?.to_vec3::<u32>()?, &[[[51]]],);
assert_eq!(
tensor.t()?.sum(&[1])?.t()?.to_vec3::<u32>()?,
&[[[8], [15]], [[10], [18]]]
);
assert_eq!(
tensor.sum(&[2, 1])?.to_vec3::<u32>()?,
&[[[8 + 15]], [[10 + 18]]]
);
Ok(())
}
fn narrow(device: &Device) -> Result<()> {
let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]];
let tensor = Tensor::new(data, device)?;
assert_eq!(
tensor.narrow(2, 1, 2)?.to_vec3::<f32>()?,
&[[[1.0, 4.0], [5.0, 9.0]], [[1.0, 7.0], [2.0, 8.0]]],
);
assert_eq!(
tensor.narrow(1, 1, 1)?.to_vec3::<f32>()?,
&[[[1.0, 5.0, 9.0]], [[8.0, 2.0, 8.0]]],
);
assert_eq!(
tensor.narrow(0, 0, 1)?.to_vec3::<f32>()?,
&[[[3.0, 1.0, 4.0], [1.0, 5.0, 9.0]]],
);
assert_eq!(
tensor.narrow(0, 1, 1)?.to_vec3::<f32>()?,
&[[[2.0, 1.0, 7.0], [8.0, 2.0, 8.0]]],
);
// The following has been checked against PyTorch via:
// import torch
// t = torch.tensor([[[3., 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]])
// t.transpose(-1, -2).narrow(1, 1, 2)
assert_eq!(
tensor.t()?.narrow(1, 1, 2)?.to_vec3::<f32>()?,
&[[[1.0, 5.0], [4.0, 9.0]], [[1.0, 2.0], [7.0, 8.0]]],
);
Ok(())
}
fn broadcast(device: &Device) -> Result<()> {
let data = &[3f32, 1., 4.];
let tensor = Tensor::new(data, device)?;
assert_eq!(
tensor.broadcast_left((3, 1))?.to_vec3::<f32>()?,
&[[[3.0, 1.0, 4.0]], [[3.0, 1.0, 4.0]], [[3.0, 1.0, 4.0]]]
);
Ok(())
}
fn cat(device: &Device) -> Result<()> {
// 1D
let t1 = Tensor::new(&[3f32, 1., 4.], device)?;
let t2 = Tensor::new(&[1f32, 5., 9., 2.], device)?;
let t3 = Tensor::new(&[6f32, 5., 3., 5., 8., 9.], device)?;
assert_eq!(Tensor::cat(&[&t1], 0)?.to_vec1::<f32>()?, [3f32, 1., 4.],);
assert_eq!(
Tensor::cat(&[&t1, &t2], 0)?.to_vec1::<f32>()?,
[3f32, 1., 4., 1., 5., 9., 2.],
);
assert_eq!(
Tensor::cat(&[&t1, &t2, &t3], 0)?.to_vec1::<f32>()?,
[3f32, 1., 4., 1., 5., 9., 2., 6., 5., 3., 5., 8., 9.],
);
// 2D
let data = &[[3f32, 1., 4., 1., 5.], [2., 7., 1., 8., 2.]];
let t1 = Tensor::new(data, device)?;
let data2 = &[[5f32, 5., 5., 5., 5.], [2., 7., 1., 8., 2.]];
let t2 = Tensor::new(data2, device)?;
assert_eq!(
Tensor::cat(&[&t1, &t2], 0)?.to_vec2::<f32>()?,
[
[3.0, 1.0, 4.0, 1.0, 5.0],
[2.0, 7.0, 1.0, 8.0, 2.0],
[5.0, 5.0, 5.0, 5.0, 5.0],
[2.0, 7.0, 1.0, 8.0, 2.0]
]
);
// TODO: This is not the expected answer, to be fixed!
assert_eq!(
Tensor::cat(&[&t1.t()?, &t2.t()?], 1)?
.t()?
.to_vec2::<f32>()?,
[
[3.0, 1.0, 4.0, 1.0, 5.0],
[2.0, 7.0, 1.0, 8.0, 2.0],
[5.0, 5.0, 5.0, 5.0, 5.0],
[2.0, 7.0, 1.0, 8.0, 2.0]
]
);
// TODO: This is not the expected answer, to be fixed!
assert_eq!(
Tensor::cat(&[&t1, &t2], 1)?.to_vec2::<f32>()?,
[
[3.0, 1.0, 4.0, 1.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0],
[2.0, 7.0, 1.0, 8.0, 2.0, 2.0, 7.0, 1.0, 8.0, 2.0]
]
);
Ok(())
}
fn embeddings(device: &Device) -> Result<()> {
let ids = Tensor::new(&[0u32, 2u32, 1u32], device)?;
let t = Tensor::new(&[[0f32, 1f32], [2f32, 3f32], [4f32, 5f32]], device)?;
let hs = Tensor::embedding(&ids, &t)?;
assert_eq!(hs.to_vec2::<f32>()?, &[[0.0, 1.0], [4.0, 5.0], [2.0, 3.0]]);
Ok(())
}
fn matmul(device: &Device) -> Result<()> {
let data = vec![1.0f32, 2.0, 3.0, 4.0];
let a = Tensor::from_slice(&data, (2, 2), device)?;
let data = vec![1.0f32, 2.0, 3.0, 4.0];
let b = Tensor::from_slice(&data, (2, 2), device)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec2::<f32>()?, &[[7.0f32, 10.0], [15.0, 22.0]]);
let data = vec![1.0f32, 2.0];
let a = Tensor::from_slice(&data, (2, 1), device)?;
let data = vec![3.0f32, 4.0];
let b = Tensor::from_slice(&data, (1, 2), device)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec2::<f32>()?, &[&[3.0, 4.0], &[6.0, 8.0]]);
let data: Vec<_> = (0..6).map(|i| i as f32).collect();
let a = Tensor::from_slice(&data, (2, 3), device)?;
let data: Vec<_> = (0..6).map(|i| (i + 2) as f32).collect();
let b = Tensor::from_slice(&data, (3, 2), device)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec2::<f32>()?, &[&[16., 19.], &[52., 64.]]);
let data: Vec<_> = (0..12).map(|i| i as f32).collect();
let a = Tensor::from_slice(&data, (2, 2, 3), device)?;
let data: Vec<_> = (0..12).map(|i| (i + 2) as f32).collect();
let b = Tensor::from_slice(&data, (2, 3, 2), device)?;
let expected = [[[16., 19.], [52., 64.]], [[214., 235.], [304., 334.]]];
let c = a.matmul(&b)?;
assert_eq!(c.to_vec3::<f32>()?, &expected);
// Also perform the matmul on contiguous transposed versions.
let a_tt = a.t()?.contiguous()?.t()?;
assert!(!a_tt.is_contiguous());
assert_eq!(a.dims(), a_tt.dims());
assert_eq!(a_tt.stride(), &[6, 1, 2]);
let b_tt = b.t()?.contiguous()?.t()?;
assert!(!b_tt.is_contiguous());
assert_eq!(b.dims(), b_tt.dims());
assert_eq!(b_tt.stride(), &[6, 1, 3]);
assert_eq!(a_tt.matmul(&b)?.to_vec3::<f32>()?, &expected);
assert_eq!(a.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
assert_eq!(a_tt.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
Ok(())
}
test_device!(zeros, zeros_cpu, zeros_gpu);
test_device!(add_mul, add_mul_cpu, add_mul_gpu);
test_device!(tensor_2d, tensor_2d_cpu, tensor_2d_gpu);
test_device!(narrow, narrow_cpu, narrow_gpu);
test_device!(broadcast, broadcast_cpu, broadcast_gpu);
test_device!(cat, cat_cpu, cat_gpu);
test_device!(sum, sum_cpu, sum_gpu);
test_device!(transpose, transpose_cpu, transpose_gpu);
test_device!(binary_op, binary_op_cpu, binary_op_gpu);
test_device!(softmax, softmax_cpu, softmax_gpu);
test_device!(embeddings, embeddings_cpu, embeddings_gpu);
test_device!(matmul, matmul_cpu, matmul_gpu);