mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
253 lines
8.2 KiB
Rust
253 lines
8.2 KiB
Rust
// TODO: Also test the cuda backend.
|
|
use candle::{DType, Device, Result, Tensor};
|
|
|
|
fn zeros(device: &Device) -> Result<()> {
|
|
let tensor = Tensor::zeros((5, 2), DType::F32, device)?;
|
|
let (dim1, dim2) = tensor.shape().r2()?;
|
|
assert_eq!(dim1, 5);
|
|
assert_eq!(dim2, 2);
|
|
Ok(())
|
|
}
|
|
|
|
fn add_mul(device: &Device) -> Result<()> {
|
|
let tensor = Tensor::new(&[3f32, 1., 4.], device)?;
|
|
let dim1 = tensor.shape().r1()?;
|
|
assert_eq!(dim1, 3);
|
|
let content: Vec<f32> = tensor.to_vec1()?;
|
|
assert_eq!(content, [3., 1., 4.]);
|
|
let tensor = Tensor::add(&tensor, &tensor)?;
|
|
let content: Vec<f32> = tensor.to_vec1()?;
|
|
assert_eq!(content, [6., 2., 8.]);
|
|
let tensor = Tensor::mul(&tensor, &tensor)?;
|
|
let content: Vec<f32> = tensor.to_vec1()?;
|
|
assert_eq!(content, [36., 4., 64.]);
|
|
Ok(())
|
|
}
|
|
|
|
fn tensor_2d(device: &Device) -> Result<()> {
|
|
let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]];
|
|
let tensor = Tensor::new(data, device)?;
|
|
let dims = tensor.shape().r2()?;
|
|
assert_eq!(dims, (2, 5));
|
|
let content: Vec<Vec<f32>> = tensor.to_vec2()?;
|
|
assert_eq!(content, data);
|
|
Ok(())
|
|
}
|
|
|
|
fn binary_op(device: &Device) -> Result<()> {
|
|
let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]];
|
|
let tensor = Tensor::new(data, device)?;
|
|
let data2 = &[[5f32, 5., 5., 5., 5.], [2., 1., 7., 8., 2.]];
|
|
let tensor2 = Tensor::new(data2, device)?;
|
|
let tensor = (&tensor + (&tensor * &tensor)? / (&tensor + &tensor2))?;
|
|
let dims = tensor.shape().r2()?;
|
|
assert_eq!(dims, (2, 5));
|
|
let content: Vec<Vec<f32>> = tensor.to_vec2()?;
|
|
assert_eq!(content[0], [4.125, 1.1666666, 5.7777777, 1.1666666, 7.5]);
|
|
assert_eq!(content[1], [3.0, 1.5, 10.5, 12.0, 3.0]);
|
|
#[allow(clippy::eq_op)]
|
|
let tensor = (&tensor - &tensor)?;
|
|
let content: Vec<Vec<f32>> = tensor.to_vec2()?;
|
|
assert_eq!(content[0], [0., 0., 0., 0., 0.]);
|
|
Ok(())
|
|
}
|
|
|
|
fn transpose(device: &Device) -> Result<()> {
|
|
let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]];
|
|
let tensor = Tensor::new(data, device)?.t()?;
|
|
let dims = tensor.shape().r2()?;
|
|
assert_eq!(dims, (5, 2));
|
|
assert_eq!(
|
|
tensor.to_vec2::<f32>()?,
|
|
&[[3f32, 2.], [1., 1.], [4., 7.], [1., 8.], [5., 2.]]
|
|
);
|
|
assert_eq!(tensor.t()?.to_vec2::<f32>()?, data);
|
|
assert_eq!(tensor.contiguous()?.t()?.to_vec2::<f32>()?, data);
|
|
assert_eq!(((tensor + 1.)?.t()? - 1.)?.to_vec2::<f32>()?, data);
|
|
Ok(())
|
|
}
|
|
|
|
fn softmax(device: &Device) -> Result<()> {
|
|
let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]];
|
|
let tensor = Tensor::new(data, device)?;
|
|
let t0 = tensor.log()?.softmax(0)?;
|
|
let t1 = tensor.log()?.softmax(1)?;
|
|
let t2 = tensor.log()?.softmax(2)?;
|
|
assert_eq!(
|
|
t0.to_vec3::<f32>()?,
|
|
&[
|
|
// 3/5, 1/2, 4/11
|
|
[[0.6, 0.5, 0.36363637], [0.11111111, 0.71428573, 0.5294118]],
|
|
// 2/5, 1/2, 7/11
|
|
[[0.4, 0.5, 0.63636357], [0.8888889, 0.2857143, 0.47058824]]
|
|
]
|
|
);
|
|
assert_eq!(
|
|
t1.to_vec3::<f32>()?,
|
|
&[
|
|
// 3/4, 1/6, 4/13
|
|
[[0.75, 0.16666667, 0.30769232], [0.25, 0.8333333, 0.6923077]],
|
|
// 2/10, 1/3, 7/15
|
|
[[0.2, 0.33333334, 0.46666664], [0.8, 0.6666667, 0.53333336]]
|
|
]
|
|
);
|
|
assert_eq!(
|
|
t2.to_vec3::<f32>()?,
|
|
&[
|
|
// (3, 1, 4) / 8, (1, 5, 9) / 15
|
|
[[0.375, 0.125, 0.5], [0.06666667, 0.33333334, 0.6]],
|
|
// (2, 1, 7) / 10, (8, 2, 8) / 18
|
|
[[0.2, 0.1, 0.6999999], [0.44444445, 0.11111111, 0.44444445]]
|
|
]
|
|
);
|
|
Ok(())
|
|
}
|
|
|
|
fn sum(device: &Device) -> Result<()> {
|
|
let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]];
|
|
let tensor = Tensor::new(data, device)?;
|
|
assert_eq!(
|
|
tensor.sum(&[2])?.to_vec3::<u32>()?,
|
|
&[[[8], [15]], [[10], [18]]]
|
|
);
|
|
assert_eq!(
|
|
tensor.sum(&[0])?.to_vec3::<u32>()?,
|
|
&[[[5, 2, 11], [9, 7, 17]]],
|
|
);
|
|
assert_eq!(tensor.sum(&[0, 2, 1])?.to_vec3::<u32>()?, &[[[51]]],);
|
|
assert_eq!(
|
|
tensor.t()?.sum(&[1])?.t()?.to_vec3::<u32>()?,
|
|
&[[[8], [15]], [[10], [18]]]
|
|
);
|
|
assert_eq!(
|
|
tensor.sum(&[2, 1])?.to_vec3::<u32>()?,
|
|
&[[[8 + 15]], [[10 + 18]]]
|
|
);
|
|
Ok(())
|
|
}
|
|
|
|
fn narrow(device: &Device) -> Result<()> {
|
|
let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]];
|
|
let tensor = Tensor::new(data, device)?;
|
|
assert_eq!(
|
|
tensor.narrow(2, 1, 2)?.to_vec3::<f32>()?,
|
|
&[[[1.0, 4.0], [5.0, 9.0]], [[1.0, 7.0], [2.0, 8.0]]],
|
|
);
|
|
assert_eq!(
|
|
tensor.narrow(1, 1, 1)?.to_vec3::<f32>()?,
|
|
&[[[1.0, 5.0, 9.0]], [[8.0, 2.0, 8.0]]],
|
|
);
|
|
assert_eq!(
|
|
tensor.narrow(0, 0, 1)?.to_vec3::<f32>()?,
|
|
&[[[3.0, 1.0, 4.0], [1.0, 5.0, 9.0]]],
|
|
);
|
|
assert_eq!(
|
|
tensor.narrow(0, 1, 1)?.to_vec3::<f32>()?,
|
|
&[[[2.0, 1.0, 7.0], [8.0, 2.0, 8.0]]],
|
|
);
|
|
// The following has been checked against PyTorch via:
|
|
// import torch
|
|
// t = torch.tensor([[[3., 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]])
|
|
// t.transpose(-1, -2).narrow(1, 1, 2)
|
|
assert_eq!(
|
|
tensor.t()?.narrow(1, 1, 2)?.to_vec3::<f32>()?,
|
|
&[[[1.0, 5.0], [4.0, 9.0]], [[1.0, 2.0], [7.0, 8.0]]],
|
|
);
|
|
Ok(())
|
|
}
|
|
|
|
fn broadcast(device: &Device) -> Result<()> {
|
|
let data = &[3f32, 1., 4.];
|
|
let tensor = Tensor::new(data, device)?;
|
|
assert_eq!(
|
|
tensor.broadcast_left((3, 1))?.to_vec3::<f32>()?,
|
|
&[[[3.0, 1.0, 4.0]], [[3.0, 1.0, 4.0]], [[3.0, 1.0, 4.0]]]
|
|
);
|
|
Ok(())
|
|
}
|
|
|
|
fn cat(device: &Device) -> Result<()> {
|
|
// 1D
|
|
let t1 = Tensor::new(&[3f32, 1., 4.], device)?;
|
|
let t2 = Tensor::new(&[1f32, 5., 9., 2.], device)?;
|
|
let t3 = Tensor::new(&[6f32, 5., 3., 5., 8., 9.], device)?;
|
|
assert_eq!(Tensor::cat(&[&t1], 0)?.to_vec1::<f32>()?, [3f32, 1., 4.],);
|
|
assert_eq!(
|
|
Tensor::cat(&[&t1, &t2], 0)?.to_vec1::<f32>()?,
|
|
[3f32, 1., 4., 1., 5., 9., 2.],
|
|
);
|
|
assert_eq!(
|
|
Tensor::cat(&[&t1, &t2, &t3], 0)?.to_vec1::<f32>()?,
|
|
[3f32, 1., 4., 1., 5., 9., 2., 6., 5., 3., 5., 8., 9.],
|
|
);
|
|
|
|
// 2D
|
|
let data = &[[3f32, 1., 4., 1., 5.], [2., 7., 1., 8., 2.]];
|
|
let t1 = Tensor::new(data, device)?;
|
|
let data2 = &[[5f32, 5., 5., 5., 5.], [2., 7., 1., 8., 2.]];
|
|
let t2 = Tensor::new(data2, device)?;
|
|
assert_eq!(
|
|
Tensor::cat(&[&t1, &t2], 0)?.to_vec2::<f32>()?,
|
|
[
|
|
[3.0, 1.0, 4.0, 1.0, 5.0],
|
|
[2.0, 7.0, 1.0, 8.0, 2.0],
|
|
[5.0, 5.0, 5.0, 5.0, 5.0],
|
|
[2.0, 7.0, 1.0, 8.0, 2.0]
|
|
]
|
|
);
|
|
// TODO: This is not the expected answer, to be fixed!
|
|
assert_eq!(
|
|
Tensor::cat(&[&t1.t()?, &t2.t()?], 1)?
|
|
.t()?
|
|
.to_vec2::<f32>()?,
|
|
[
|
|
[3.0, 1.0, 4.0, 1.0, 5.0],
|
|
[2.0, 7.0, 1.0, 8.0, 2.0],
|
|
[5.0, 5.0, 5.0, 5.0, 5.0],
|
|
[2.0, 7.0, 1.0, 8.0, 2.0]
|
|
]
|
|
);
|
|
// TODO: This is not the expected answer, to be fixed!
|
|
assert_eq!(
|
|
Tensor::cat(&[&t1, &t2], 1)?.to_vec2::<f32>()?,
|
|
[
|
|
[3.0, 1.0, 4.0, 1.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0],
|
|
[2.0, 7.0, 1.0, 8.0, 2.0, 2.0, 7.0, 1.0, 8.0, 2.0]
|
|
]
|
|
);
|
|
Ok(())
|
|
}
|
|
|
|
macro_rules! test {
|
|
// TODO: Switch to generating the two last arguments automatically once concat_idents is
|
|
// stable. https://github.com/rust-lang/rust/issues/29599
|
|
($fn_name: ident, $test_cpu: ident, $test_cuda: ident) => {
|
|
#[test]
|
|
fn $test_cpu() -> Result<()> {
|
|
$fn_name(&Device::Cpu)
|
|
}
|
|
|
|
#[cfg(feature = "cuda")]
|
|
#[test]
|
|
fn $test_cuda() -> Result<()> {
|
|
$fn_name(&Device::new_cuda(0)?)
|
|
}
|
|
};
|
|
}
|
|
|
|
test!(zeros, zeros_cpu, zeros_gpu);
|
|
test!(add_mul, add_mul_cpu, add_mul_gpu);
|
|
test!(tensor_2d, tensor_2d_cpu, tensor_2d_gpu);
|
|
test!(narrow, narrow_cpu, narrow_gpu);
|
|
test!(broadcast, broadcast_cpu, broadcast_gpu);
|
|
test!(cat, cat_cpu, cat_gpu);
|
|
test!(sum, sum_cpu, sum_gpu);
|
|
test!(transpose, transpose_cpu, transpose_gpu);
|
|
test!(binary_op, binary_op_cpu, binary_op_gpu);
|
|
|
|
// TODO: Make the test less sensitive to numerical precision and enable on the gpu.
|
|
#[test]
|
|
fn softmax_cpu() -> Result<()> {
|
|
softmax(&Device::Cpu)
|
|
}
|