mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
168 lines
4.8 KiB
Rust
168 lines
4.8 KiB
Rust
// This should reach 91.5% accuracy.
|
|
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
use candle::{DType, Device, Result, Shape, Tensor, Var, D};
|
|
use candle_nn::{loss, ops, Linear};
|
|
use std::sync::{Arc, Mutex};
|
|
|
|
const IMAGE_DIM: usize = 784;
|
|
const LABELS: usize = 10;
|
|
|
|
struct TensorData {
|
|
tensors: std::collections::HashMap<String, Var>,
|
|
pub dtype: DType,
|
|
pub device: Device,
|
|
}
|
|
|
|
// A variant of candle_nn::VarBuilder for initializing variables before training.
|
|
#[derive(Clone)]
|
|
struct VarStore {
|
|
data: Arc<Mutex<TensorData>>,
|
|
path: Vec<String>,
|
|
}
|
|
|
|
impl VarStore {
|
|
fn new(dtype: DType, device: Device) -> Self {
|
|
let data = TensorData {
|
|
tensors: std::collections::HashMap::new(),
|
|
dtype,
|
|
device,
|
|
};
|
|
Self {
|
|
data: Arc::new(Mutex::new(data)),
|
|
path: vec![],
|
|
}
|
|
}
|
|
|
|
fn pp(&self, s: &str) -> Self {
|
|
let mut path = self.path.clone();
|
|
path.push(s.to_string());
|
|
Self {
|
|
data: self.data.clone(),
|
|
path,
|
|
}
|
|
}
|
|
|
|
fn get<S: Into<Shape>>(&self, shape: S, tensor_name: &str) -> Result<Tensor> {
|
|
let shape = shape.into();
|
|
let path = if self.path.is_empty() {
|
|
tensor_name.to_string()
|
|
} else {
|
|
[&self.path.join("."), tensor_name].join(".")
|
|
};
|
|
let mut tensor_data = self.data.lock().unwrap();
|
|
if let Some(tensor) = tensor_data.tensors.get(&path) {
|
|
let tensor_shape = tensor.shape();
|
|
if &shape != tensor_shape {
|
|
candle::bail!("shape mismatch on {path}: {shape:?} <> {tensor_shape:?}")
|
|
}
|
|
return Ok(tensor.as_tensor().clone());
|
|
}
|
|
// TODO: Proper initialization using the `Init` enum.
|
|
let var = Var::zeros(shape, tensor_data.dtype, &tensor_data.device)?;
|
|
let tensor = var.as_tensor().clone();
|
|
tensor_data.tensors.insert(path, var);
|
|
Ok(tensor)
|
|
}
|
|
|
|
fn all_vars(&self) -> Vec<Var> {
|
|
let tensor_data = self.data.lock().unwrap();
|
|
#[allow(clippy::map_clone)]
|
|
tensor_data
|
|
.tensors
|
|
.values()
|
|
.map(|c| c.clone())
|
|
.collect::<Vec<_>>()
|
|
}
|
|
}
|
|
|
|
fn linear(dim1: usize, dim2: usize, vs: VarStore) -> Result<Linear> {
|
|
let ws = vs.get((dim2, dim1), "weight")?;
|
|
let bs = vs.get(dim2, "bias")?;
|
|
Ok(Linear::new(ws, Some(bs)))
|
|
}
|
|
|
|
#[allow(unused)]
|
|
struct LinearModel {
|
|
linear: Linear,
|
|
}
|
|
|
|
#[allow(unused)]
|
|
impl LinearModel {
|
|
fn new(vs: VarStore) -> Result<Self> {
|
|
let linear = linear(IMAGE_DIM, LABELS, vs)?;
|
|
Ok(Self { linear })
|
|
}
|
|
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
self.linear.forward(xs)
|
|
}
|
|
}
|
|
|
|
#[allow(unused)]
|
|
struct Mlp {
|
|
ln1: Linear,
|
|
ln2: Linear,
|
|
}
|
|
|
|
#[allow(unused)]
|
|
impl Mlp {
|
|
fn new(vs: VarStore) -> Result<Self> {
|
|
let ln1 = linear(IMAGE_DIM, 100, vs.pp("ln1"))?;
|
|
let ln2 = linear(100, LABELS, vs.pp("ln2"))?;
|
|
Ok(Self { ln1, ln2 })
|
|
}
|
|
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let xs = self.ln1.forward(xs)?;
|
|
let xs = xs.relu()?;
|
|
self.ln2.forward(&xs)
|
|
}
|
|
}
|
|
|
|
pub fn main() -> anyhow::Result<()> {
|
|
let dev = candle::Device::cuda_if_available(0)?;
|
|
|
|
// Load the dataset
|
|
let m = candle_nn::vision::mnist::load_dir("data")?;
|
|
println!("train-images: {:?}", m.train_images.shape());
|
|
println!("train-labels: {:?}", m.train_labels.shape());
|
|
println!("test-images: {:?}", m.test_images.shape());
|
|
println!("test-labels: {:?}", m.test_labels.shape());
|
|
let train_labels = m.train_labels;
|
|
let train_images = m.train_images;
|
|
let train_labels = train_labels.to_dtype(DType::U32)?.unsqueeze(1)?;
|
|
|
|
let vs = VarStore::new(DType::F32, dev);
|
|
let model = LinearModel::new(vs.clone())?;
|
|
// let model = Mlp::new(vs)?;
|
|
|
|
let all_vars = vs.all_vars();
|
|
let all_vars = all_vars.iter().collect::<Vec<_>>();
|
|
let sgd = candle_nn::SGD::new(&all_vars, 1.0);
|
|
let test_images = m.test_images;
|
|
let test_labels = m.test_labels.to_dtype(DType::U32)?;
|
|
for epoch in 1..200 {
|
|
let logits = model.forward(&train_images)?;
|
|
let log_sm = ops::log_softmax(&logits, D::Minus1)?;
|
|
let loss = loss::nll(&log_sm, &train_labels)?;
|
|
sgd.backward_step(&loss)?;
|
|
|
|
let test_logits = model.forward(&test_images)?;
|
|
let sum_ok = test_logits
|
|
.argmax(D::Minus1)?
|
|
.eq(&test_labels)?
|
|
.to_dtype(DType::F32)?
|
|
.sum_all()?
|
|
.to_scalar::<f32>()?;
|
|
let test_accuracy = sum_ok / test_labels.dims1()? as f32;
|
|
println!(
|
|
"{epoch:4} train loss: {:8.5} test acc: {:5.2}%",
|
|
loss.to_scalar::<f32>()?,
|
|
100. * test_accuracy
|
|
);
|
|
}
|
|
Ok(())
|
|
}
|