mirror of
https://github.com/huggingface/candle.git
synced 2025-06-18 19:47:12 +00:00
257 lines
7.8 KiB
Rust
257 lines
7.8 KiB
Rust
use crate::model::{report_detect, report_pose, Bbox, Multiples, YoloV8, YoloV8Pose};
|
|
use candle::{DType, Device, Result, Tensor};
|
|
use candle_nn::{Module, VarBuilder};
|
|
use serde::{Deserialize, Serialize};
|
|
use wasm_bindgen::prelude::*;
|
|
use yew_agent::{HandlerId, Public, WorkerLink};
|
|
|
|
#[wasm_bindgen]
|
|
extern "C" {
|
|
// Use `js_namespace` here to bind `console.log(..)` instead of just
|
|
// `log(..)`
|
|
#[wasm_bindgen(js_namespace = console)]
|
|
pub fn log(s: &str);
|
|
}
|
|
|
|
#[macro_export]
|
|
macro_rules! console_log {
|
|
// Note that this is using the `log` function imported above during
|
|
// `bare_bones`
|
|
($($t:tt)*) => ($crate::worker::log(&format_args!($($t)*).to_string()))
|
|
}
|
|
|
|
// Communication to the worker happens through bincode, the model weights and configs are fetched
|
|
// on the main thread and transferred via the following structure.
|
|
#[derive(Serialize, Deserialize)]
|
|
pub struct ModelData {
|
|
pub weights: Vec<u8>,
|
|
pub model_size: String,
|
|
}
|
|
|
|
#[derive(Serialize, Deserialize)]
|
|
pub struct RunData {
|
|
pub image_data: Vec<u8>,
|
|
pub conf_threshold: f32,
|
|
pub iou_threshold: f32,
|
|
}
|
|
|
|
pub struct Model {
|
|
model: YoloV8,
|
|
}
|
|
|
|
impl Model {
|
|
pub fn run(
|
|
&self,
|
|
image_data: Vec<u8>,
|
|
conf_threshold: f32,
|
|
iou_threshold: f32,
|
|
) -> Result<Vec<Vec<Bbox>>> {
|
|
console_log!("image data: {}", image_data.len());
|
|
let image_data = std::io::Cursor::new(image_data);
|
|
let original_image = image::io::Reader::new(image_data)
|
|
.with_guessed_format()?
|
|
.decode()
|
|
.map_err(candle::Error::wrap)?;
|
|
let (width, height) = {
|
|
let w = original_image.width() as usize;
|
|
let h = original_image.height() as usize;
|
|
if w < h {
|
|
let w = w * 640 / h;
|
|
// Sizes have to be divisible by 32.
|
|
(w / 32 * 32, 640)
|
|
} else {
|
|
let h = h * 640 / w;
|
|
(640, h / 32 * 32)
|
|
}
|
|
};
|
|
let image_t = {
|
|
let img = original_image.resize_exact(
|
|
width as u32,
|
|
height as u32,
|
|
image::imageops::FilterType::CatmullRom,
|
|
);
|
|
let data = img.to_rgb8().into_raw();
|
|
Tensor::from_vec(
|
|
data,
|
|
(img.height() as usize, img.width() as usize, 3),
|
|
&Device::Cpu,
|
|
)?
|
|
.permute((2, 0, 1))?
|
|
};
|
|
let image_t = (image_t.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
|
|
let predictions = self.model.forward(&image_t)?.squeeze(0)?;
|
|
console_log!("generated predictions {predictions:?}");
|
|
let bboxes = report_detect(
|
|
&predictions,
|
|
original_image,
|
|
width,
|
|
height,
|
|
conf_threshold,
|
|
iou_threshold,
|
|
)?;
|
|
Ok(bboxes)
|
|
}
|
|
|
|
pub fn load_(weights: Vec<u8>, model_size: &str) -> Result<Self> {
|
|
let multiples = match model_size {
|
|
"n" => Multiples::n(),
|
|
"s" => Multiples::s(),
|
|
"m" => Multiples::m(),
|
|
"l" => Multiples::l(),
|
|
"x" => Multiples::x(),
|
|
_ => Err(candle::Error::Msg(
|
|
"invalid model size: must be n, s, m, l or x".to_string(),
|
|
))?,
|
|
};
|
|
let dev = &Device::Cpu;
|
|
let vb = VarBuilder::from_buffered_safetensors(weights, DType::F32, dev)?;
|
|
let model = YoloV8::load(vb, multiples, 80)?;
|
|
Ok(Self { model })
|
|
}
|
|
|
|
pub fn load(md: ModelData) -> Result<Self> {
|
|
Self::load_(md.weights, &md.model_size.to_string())
|
|
}
|
|
}
|
|
|
|
pub struct ModelPose {
|
|
model: YoloV8Pose,
|
|
}
|
|
|
|
impl ModelPose {
|
|
pub fn run(
|
|
&self,
|
|
image_data: Vec<u8>,
|
|
conf_threshold: f32,
|
|
iou_threshold: f32,
|
|
) -> Result<Vec<Bbox>> {
|
|
console_log!("image data: {}", image_data.len());
|
|
let image_data = std::io::Cursor::new(image_data);
|
|
let original_image = image::io::Reader::new(image_data)
|
|
.with_guessed_format()?
|
|
.decode()
|
|
.map_err(candle::Error::wrap)?;
|
|
let (width, height) = {
|
|
let w = original_image.width() as usize;
|
|
let h = original_image.height() as usize;
|
|
if w < h {
|
|
let w = w * 640 / h;
|
|
// Sizes have to be divisible by 32.
|
|
(w / 32 * 32, 640)
|
|
} else {
|
|
let h = h * 640 / w;
|
|
(640, h / 32 * 32)
|
|
}
|
|
};
|
|
let image_t = {
|
|
let img = original_image.resize_exact(
|
|
width as u32,
|
|
height as u32,
|
|
image::imageops::FilterType::CatmullRom,
|
|
);
|
|
let data = img.to_rgb8().into_raw();
|
|
Tensor::from_vec(
|
|
data,
|
|
(img.height() as usize, img.width() as usize, 3),
|
|
&Device::Cpu,
|
|
)?
|
|
.permute((2, 0, 1))?
|
|
};
|
|
let image_t = (image_t.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
|
|
let predictions = self.model.forward(&image_t)?.squeeze(0)?;
|
|
console_log!("generated predictions {predictions:?}");
|
|
let bboxes = report_pose(
|
|
&predictions,
|
|
original_image,
|
|
width,
|
|
height,
|
|
conf_threshold,
|
|
iou_threshold,
|
|
)?;
|
|
Ok(bboxes)
|
|
}
|
|
|
|
pub fn load_(weights: Vec<u8>, model_size: &str) -> Result<Self> {
|
|
let multiples = match model_size {
|
|
"n" => Multiples::n(),
|
|
"s" => Multiples::s(),
|
|
"m" => Multiples::m(),
|
|
"l" => Multiples::l(),
|
|
"x" => Multiples::x(),
|
|
_ => Err(candle::Error::Msg(
|
|
"invalid model size: must be n, s, m, l or x".to_string(),
|
|
))?,
|
|
};
|
|
let dev = &Device::Cpu;
|
|
let vb = VarBuilder::from_buffered_safetensors(weights, DType::F32, dev)?;
|
|
let model = YoloV8Pose::load(vb, multiples, 1, (17, 3))?;
|
|
Ok(Self { model })
|
|
}
|
|
|
|
pub fn load(md: ModelData) -> Result<Self> {
|
|
Self::load_(md.weights, &md.model_size.to_string())
|
|
}
|
|
}
|
|
|
|
pub struct Worker {
|
|
link: WorkerLink<Self>,
|
|
model: Option<Model>,
|
|
}
|
|
|
|
#[derive(Serialize, Deserialize)]
|
|
pub enum WorkerInput {
|
|
ModelData(ModelData),
|
|
RunData(RunData),
|
|
}
|
|
|
|
#[derive(Serialize, Deserialize)]
|
|
pub enum WorkerOutput {
|
|
ProcessingDone(std::result::Result<Vec<Vec<Bbox>>, String>),
|
|
WeightsLoaded,
|
|
}
|
|
|
|
impl yew_agent::Worker for Worker {
|
|
type Input = WorkerInput;
|
|
type Message = ();
|
|
type Output = std::result::Result<WorkerOutput, String>;
|
|
type Reach = Public<Self>;
|
|
|
|
fn create(link: WorkerLink<Self>) -> Self {
|
|
Self { link, model: None }
|
|
}
|
|
|
|
fn update(&mut self, _msg: Self::Message) {
|
|
// no messaging
|
|
}
|
|
|
|
fn handle_input(&mut self, msg: Self::Input, id: HandlerId) {
|
|
let output = match msg {
|
|
WorkerInput::ModelData(md) => match Model::load(md) {
|
|
Ok(model) => {
|
|
self.model = Some(model);
|
|
Ok(WorkerOutput::WeightsLoaded)
|
|
}
|
|
Err(err) => Err(format!("model creation error {err:?}")),
|
|
},
|
|
WorkerInput::RunData(rd) => match &mut self.model {
|
|
None => Err("model has not been set yet".to_string()),
|
|
Some(model) => {
|
|
let result = model
|
|
.run(rd.image_data, rd.conf_threshold, rd.iou_threshold)
|
|
.map_err(|e| e.to_string());
|
|
Ok(WorkerOutput::ProcessingDone(result))
|
|
}
|
|
},
|
|
};
|
|
self.link.respond(id, output);
|
|
}
|
|
|
|
fn name_of_resource() -> &'static str {
|
|
"worker.js"
|
|
}
|
|
|
|
fn resource_path_is_relative() -> bool {
|
|
true
|
|
}
|
|
}
|