Files
candle/candle-wasm-examples/yolo/src/worker.rs
Laurent Mazare 1e86717bf2 Fix a couple typos (#1451)
* Mixtral quantized instruct.

* Fix a couple typos.
2023-12-17 05:20:05 -06:00

257 lines
7.8 KiB
Rust

use crate::model::{report_detect, report_pose, Bbox, Multiples, YoloV8, YoloV8Pose};
use candle::{DType, Device, Result, Tensor};
use candle_nn::{Module, VarBuilder};
use serde::{Deserialize, Serialize};
use wasm_bindgen::prelude::*;
use yew_agent::{HandlerId, Public, WorkerLink};
#[wasm_bindgen]
extern "C" {
// Use `js_namespace` here to bind `console.log(..)` instead of just
// `log(..)`
#[wasm_bindgen(js_namespace = console)]
pub fn log(s: &str);
}
#[macro_export]
macro_rules! console_log {
// Note that this is using the `log` function imported above during
// `bare_bones`
($($t:tt)*) => ($crate::worker::log(&format_args!($($t)*).to_string()))
}
// Communication to the worker happens through bincode, the model weights and configs are fetched
// on the main thread and transferred via the following structure.
#[derive(Serialize, Deserialize)]
pub struct ModelData {
pub weights: Vec<u8>,
pub model_size: String,
}
#[derive(Serialize, Deserialize)]
pub struct RunData {
pub image_data: Vec<u8>,
pub conf_threshold: f32,
pub iou_threshold: f32,
}
pub struct Model {
model: YoloV8,
}
impl Model {
pub fn run(
&self,
image_data: Vec<u8>,
conf_threshold: f32,
iou_threshold: f32,
) -> Result<Vec<Vec<Bbox>>> {
console_log!("image data: {}", image_data.len());
let image_data = std::io::Cursor::new(image_data);
let original_image = image::io::Reader::new(image_data)
.with_guessed_format()?
.decode()
.map_err(candle::Error::wrap)?;
let (width, height) = {
let w = original_image.width() as usize;
let h = original_image.height() as usize;
if w < h {
let w = w * 640 / h;
// Sizes have to be divisible by 32.
(w / 32 * 32, 640)
} else {
let h = h * 640 / w;
(640, h / 32 * 32)
}
};
let image_t = {
let img = original_image.resize_exact(
width as u32,
height as u32,
image::imageops::FilterType::CatmullRom,
);
let data = img.to_rgb8().into_raw();
Tensor::from_vec(
data,
(img.height() as usize, img.width() as usize, 3),
&Device::Cpu,
)?
.permute((2, 0, 1))?
};
let image_t = (image_t.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
let predictions = self.model.forward(&image_t)?.squeeze(0)?;
console_log!("generated predictions {predictions:?}");
let bboxes = report_detect(
&predictions,
original_image,
width,
height,
conf_threshold,
iou_threshold,
)?;
Ok(bboxes)
}
pub fn load_(weights: Vec<u8>, model_size: &str) -> Result<Self> {
let multiples = match model_size {
"n" => Multiples::n(),
"s" => Multiples::s(),
"m" => Multiples::m(),
"l" => Multiples::l(),
"x" => Multiples::x(),
_ => Err(candle::Error::Msg(
"invalid model size: must be n, s, m, l or x".to_string(),
))?,
};
let dev = &Device::Cpu;
let vb = VarBuilder::from_buffered_safetensors(weights, DType::F32, dev)?;
let model = YoloV8::load(vb, multiples, 80)?;
Ok(Self { model })
}
pub fn load(md: ModelData) -> Result<Self> {
Self::load_(md.weights, &md.model_size.to_string())
}
}
pub struct ModelPose {
model: YoloV8Pose,
}
impl ModelPose {
pub fn run(
&self,
image_data: Vec<u8>,
conf_threshold: f32,
iou_threshold: f32,
) -> Result<Vec<Bbox>> {
console_log!("image data: {}", image_data.len());
let image_data = std::io::Cursor::new(image_data);
let original_image = image::io::Reader::new(image_data)
.with_guessed_format()?
.decode()
.map_err(candle::Error::wrap)?;
let (width, height) = {
let w = original_image.width() as usize;
let h = original_image.height() as usize;
if w < h {
let w = w * 640 / h;
// Sizes have to be divisible by 32.
(w / 32 * 32, 640)
} else {
let h = h * 640 / w;
(640, h / 32 * 32)
}
};
let image_t = {
let img = original_image.resize_exact(
width as u32,
height as u32,
image::imageops::FilterType::CatmullRom,
);
let data = img.to_rgb8().into_raw();
Tensor::from_vec(
data,
(img.height() as usize, img.width() as usize, 3),
&Device::Cpu,
)?
.permute((2, 0, 1))?
};
let image_t = (image_t.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
let predictions = self.model.forward(&image_t)?.squeeze(0)?;
console_log!("generated predictions {predictions:?}");
let bboxes = report_pose(
&predictions,
original_image,
width,
height,
conf_threshold,
iou_threshold,
)?;
Ok(bboxes)
}
pub fn load_(weights: Vec<u8>, model_size: &str) -> Result<Self> {
let multiples = match model_size {
"n" => Multiples::n(),
"s" => Multiples::s(),
"m" => Multiples::m(),
"l" => Multiples::l(),
"x" => Multiples::x(),
_ => Err(candle::Error::Msg(
"invalid model size: must be n, s, m, l or x".to_string(),
))?,
};
let dev = &Device::Cpu;
let vb = VarBuilder::from_buffered_safetensors(weights, DType::F32, dev)?;
let model = YoloV8Pose::load(vb, multiples, 1, (17, 3))?;
Ok(Self { model })
}
pub fn load(md: ModelData) -> Result<Self> {
Self::load_(md.weights, &md.model_size.to_string())
}
}
pub struct Worker {
link: WorkerLink<Self>,
model: Option<Model>,
}
#[derive(Serialize, Deserialize)]
pub enum WorkerInput {
ModelData(ModelData),
RunData(RunData),
}
#[derive(Serialize, Deserialize)]
pub enum WorkerOutput {
ProcessingDone(std::result::Result<Vec<Vec<Bbox>>, String>),
WeightsLoaded,
}
impl yew_agent::Worker for Worker {
type Input = WorkerInput;
type Message = ();
type Output = std::result::Result<WorkerOutput, String>;
type Reach = Public<Self>;
fn create(link: WorkerLink<Self>) -> Self {
Self { link, model: None }
}
fn update(&mut self, _msg: Self::Message) {
// no messaging
}
fn handle_input(&mut self, msg: Self::Input, id: HandlerId) {
let output = match msg {
WorkerInput::ModelData(md) => match Model::load(md) {
Ok(model) => {
self.model = Some(model);
Ok(WorkerOutput::WeightsLoaded)
}
Err(err) => Err(format!("model creation error {err:?}")),
},
WorkerInput::RunData(rd) => match &mut self.model {
None => Err("model has not been set yet".to_string()),
Some(model) => {
let result = model
.run(rd.image_data, rd.conf_threshold, rd.iou_threshold)
.map_err(|e| e.to_string());
Ok(WorkerOutput::ProcessingDone(result))
}
},
};
self.link.respond(id, output);
}
fn name_of_resource() -> &'static str {
"worker.js"
}
fn resource_path_is_relative() -> bool {
true
}
}