mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 03:54:56 +00:00
84 lines
2.9 KiB
Rust
84 lines
2.9 KiB
Rust
use candle::{DType, Error, Result, Tensor};
|
|
use rand::{distributions::Distribution, SeedableRng};
|
|
|
|
pub struct LogitsProcessor {
|
|
rng: rand::rngs::StdRng,
|
|
temperature: Option<f64>,
|
|
top_p: Option<f64>,
|
|
}
|
|
|
|
impl LogitsProcessor {
|
|
pub fn new(seed: u64, temperature: Option<f64>, top_p: Option<f64>) -> Self {
|
|
let temperature = if temperature.map_or(true, |v| v < 1e-7) {
|
|
None
|
|
} else {
|
|
temperature
|
|
};
|
|
Self {
|
|
rng: rand::rngs::StdRng::seed_from_u64(seed),
|
|
temperature,
|
|
top_p,
|
|
}
|
|
}
|
|
|
|
fn sample_argmax(&mut self, logits: Tensor) -> Result<u32> {
|
|
let logits_v: Vec<f32> = logits.to_vec1()?;
|
|
let next_token = logits_v
|
|
.iter()
|
|
.enumerate()
|
|
.max_by(|(_, u), (_, v)| u.total_cmp(v))
|
|
.map(|(i, _)| i as u32)
|
|
.unwrap();
|
|
Ok(next_token)
|
|
}
|
|
|
|
fn sample_multinomial(&mut self, prs: &Vec<f32>) -> Result<u32> {
|
|
let distr = rand::distributions::WeightedIndex::new(prs).map_err(Error::wrap)?;
|
|
let next_token = distr.sample(&mut self.rng) as u32;
|
|
Ok(next_token)
|
|
}
|
|
|
|
fn sample_topp(&mut self, prs: &mut Vec<f32>, top_p: f32) -> Result<u32> {
|
|
// top-p sampling (or "nucleus sampling") samples from the smallest set of
|
|
// tokens that exceed probability top_p. This way we never sample tokens that
|
|
// have very low probabilities and are less likely to go "off the rails".
|
|
let mut argsort_indices = (0..prs.len()).collect::<Vec<_>>();
|
|
|
|
// Sort by descending probability.
|
|
argsort_indices.sort_by(|&i, &j| prs[j].partial_cmp(&prs[i]).unwrap());
|
|
|
|
// Clamp smaller probabilities to zero.
|
|
let mut cumsum = 0.;
|
|
for index in &argsort_indices {
|
|
if cumsum >= top_p {
|
|
prs[*index] = 0.0;
|
|
} else {
|
|
cumsum += prs[*index];
|
|
}
|
|
}
|
|
// Sample with clamped probabilities.
|
|
self.sample_multinomial(prs)
|
|
}
|
|
|
|
pub fn sample(&mut self, logits: &Tensor) -> Result<u32> {
|
|
let logits = logits.to_dtype(DType::F32)?;
|
|
let next_token = match self.temperature {
|
|
None => self.sample_argmax(logits)?,
|
|
Some(temperature) => {
|
|
let logits = &(&logits / temperature)?;
|
|
let prs = candle_nn::ops::softmax_last_dim(logits)?;
|
|
let mut prs: Vec<f32> = prs.to_vec1()?;
|
|
let top_p = self.top_p.unwrap_or(1.);
|
|
if top_p <= 0.0 || top_p >= 1.0 {
|
|
// simply sample from the predicted probability distribution
|
|
self.sample_multinomial(&prs)?
|
|
} else {
|
|
// top-p (nucleus) sampling, clamping the least likely tokens to zero
|
|
self.sample_topp(&mut prs, top_p as f32)?
|
|
}
|
|
}
|
|
};
|
|
Ok(next_token)
|
|
}
|
|
}
|