Files
candle/src/device.rs
2023-06-22 08:33:32 +01:00

115 lines
3.1 KiB
Rust

use crate::{CpuStorage, DType, Result, Shape, Storage};
/// A `DeviceLocation` represents a physical device whereas multiple `Device`
/// can live on the same location (typically for cuda devices).
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum DeviceLocation {
Cpu,
Cuda { gpu_id: usize },
}
#[derive(Debug, Clone)]
pub enum Device {
Cpu,
Cuda(crate::CudaDevice),
}
// TODO: Should we back the cpu implementation using the NdArray crate or similar?
pub trait NdArray {
fn shape(&self) -> Result<Shape>;
fn to_cpu_storage(&self) -> CpuStorage;
}
impl<S: crate::WithDType> NdArray for S {
fn shape(&self) -> Result<Shape> {
Ok(Shape::from(()))
}
fn to_cpu_storage(&self) -> CpuStorage {
S::to_cpu_storage(&[*self])
}
}
impl<S: crate::WithDType, const N: usize> NdArray for &[S; N] {
fn shape(&self) -> Result<Shape> {
Ok(Shape::from(self.len()))
}
fn to_cpu_storage(&self) -> CpuStorage {
S::to_cpu_storage(self.as_slice())
}
}
impl<S: crate::WithDType> NdArray for &[S] {
fn shape(&self) -> Result<Shape> {
Ok(Shape::from(self.len()))
}
fn to_cpu_storage(&self) -> CpuStorage {
S::to_cpu_storage(self)
}
}
impl<S: crate::WithDType, const N: usize, const M: usize> NdArray for &[[S; N]; M] {
fn shape(&self) -> Result<Shape> {
Ok(Shape::from((M, N)))
}
fn to_cpu_storage(&self) -> CpuStorage {
S::to_cpu_storage_owned(self.concat())
}
}
impl Device {
pub fn new_cuda(ordinal: usize) -> Result<Self> {
Ok(Self::Cuda(crate::CudaDevice::new(ordinal)?))
}
pub fn location(&self) -> DeviceLocation {
match self {
Self::Cpu => DeviceLocation::Cpu,
Self::Cuda(device) => DeviceLocation::Cuda {
gpu_id: device.ordinal(),
},
}
}
pub(crate) fn ones(&self, shape: &Shape, dtype: DType) -> Result<Storage> {
match self {
Device::Cpu => {
let storage = CpuStorage::ones_impl(shape, dtype);
Ok(Storage::Cpu(storage))
}
Device::Cuda(device) => {
let storage = device.ones_impl(shape, dtype)?;
Ok(Storage::Cuda(storage))
}
}
}
pub(crate) fn zeros(&self, shape: &Shape, dtype: DType) -> Result<Storage> {
match self {
Device::Cpu => {
let storage = CpuStorage::zeros_impl(shape, dtype);
Ok(Storage::Cpu(storage))
}
Device::Cuda(device) => {
let storage = device.zeros_impl(shape, dtype)?;
Ok(Storage::Cuda(storage))
}
}
}
pub(crate) fn tensor<A: NdArray>(&self, array: A) -> Result<Storage> {
match self {
Device::Cpu => Ok(Storage::Cpu(array.to_cpu_storage())),
Device::Cuda(device) => {
let storage = array.to_cpu_storage();
let storage = device.cuda_from_cpu_storage(&storage)?;
Ok(Storage::Cuda(storage))
}
}
}
}