mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
171 lines
5.0 KiB
Rust
171 lines
5.0 KiB
Rust
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
use anyhow::Error as E;
|
|
use clap::{Parser, ValueEnum};
|
|
|
|
use candle::{DType, Device, Tensor};
|
|
use candle_nn::{ops::softmax, VarBuilder};
|
|
use candle_transformers::models::mobileclip;
|
|
|
|
use tokenizers::Tokenizer;
|
|
|
|
#[derive(Clone, Copy, Debug, ValueEnum)]
|
|
enum Which {
|
|
S1,
|
|
S2,
|
|
}
|
|
|
|
impl Which {
|
|
fn model_name(&self) -> String {
|
|
let name = match self {
|
|
Self::S1 => "S1",
|
|
Self::S2 => "S2",
|
|
};
|
|
format!("apple/MobileCLIP-{}-OpenCLIP", name)
|
|
}
|
|
|
|
fn config(&self) -> mobileclip::MobileClipConfig {
|
|
match self {
|
|
Self::S1 => mobileclip::MobileClipConfig::s1(),
|
|
Self::S2 => mobileclip::MobileClipConfig::s2(),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Parser)]
|
|
struct Args {
|
|
#[arg(long, use_value_delimiter = true)]
|
|
images: Option<Vec<String>>,
|
|
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// Use the pytorch weights rather than the safetensors ones
|
|
#[arg(long)]
|
|
use_pth: bool,
|
|
|
|
#[arg(long, use_value_delimiter = true)]
|
|
sequences: Option<Vec<String>>,
|
|
|
|
#[arg(value_enum, long, default_value_t=Which::S1)]
|
|
which: Which,
|
|
}
|
|
|
|
fn load_images<T: AsRef<std::path::Path>>(
|
|
paths: &Vec<T>,
|
|
image_size: usize,
|
|
) -> anyhow::Result<Tensor> {
|
|
let mut images = vec![];
|
|
for path in paths {
|
|
let tensor = candle_examples::imagenet::load_image_with_std_mean(
|
|
path,
|
|
image_size,
|
|
&[0.0, 0.0, 0.0],
|
|
&[1.0, 1.0, 1.0],
|
|
)?;
|
|
images.push(tensor);
|
|
}
|
|
let images = Tensor::stack(&images, 0)?;
|
|
Ok(images)
|
|
}
|
|
|
|
pub fn main() -> anyhow::Result<()> {
|
|
let args = Args::parse();
|
|
|
|
let model_name = args.which.model_name();
|
|
let api = hf_hub::api::sync::Api::new()?;
|
|
let api = api.model(model_name);
|
|
let model_file = if args.use_pth {
|
|
api.get("open_clip_pytorch_model.bin")?
|
|
} else {
|
|
api.get("open_clip_model.safetensors")?
|
|
};
|
|
let tokenizer = api.get("tokenizer.json")?;
|
|
let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?;
|
|
let config = &args.which.config();
|
|
let device = candle_examples::device(args.cpu)?;
|
|
let vec_imgs = match args.images {
|
|
Some(imgs) => imgs,
|
|
None => vec![
|
|
"candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg".to_string(),
|
|
"candle-examples/examples/yolo-v8/assets/bike.jpg".to_string(),
|
|
],
|
|
};
|
|
let images = load_images(&vec_imgs, config.image_size)?.to_device(&device)?;
|
|
let vb = if args.use_pth {
|
|
VarBuilder::from_pth(&model_file, DType::F32, &device)?
|
|
} else {
|
|
unsafe { VarBuilder::from_mmaped_safetensors(&[model_file.clone()], DType::F32, &device)? }
|
|
};
|
|
|
|
let model = mobileclip::MobileClipModel::new(vb, config)?;
|
|
let (input_ids, vec_seq) = tokenize_sequences(args.sequences, &tokenizer, &device)?;
|
|
let (_logits_per_text, logits_per_image) = model.forward(&images, &input_ids)?;
|
|
let softmax_image = softmax(&logits_per_image, 1)?;
|
|
let softmax_image_vec = softmax_image.flatten_all()?.to_vec1::<f32>()?;
|
|
println!("softmax_image_vec: {:?}", softmax_image_vec);
|
|
let probability_vec = softmax_image_vec
|
|
.iter()
|
|
.map(|v| v * 100.0)
|
|
.collect::<Vec<f32>>();
|
|
let probability_per_image = probability_vec.len() / vec_imgs.len();
|
|
|
|
for (i, img) in vec_imgs.iter().enumerate() {
|
|
let start = i * probability_per_image;
|
|
let end = start + probability_per_image;
|
|
let prob = &probability_vec[start..end];
|
|
println!("\n\nResults for image: {}\n", img);
|
|
|
|
for (i, p) in prob.iter().enumerate() {
|
|
println!("Probability: {:.4}% Text: {}", p, vec_seq[i]);
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub fn tokenize_sequences(
|
|
sequences: Option<Vec<String>>,
|
|
tokenizer: &Tokenizer,
|
|
device: &Device,
|
|
) -> anyhow::Result<(Tensor, Vec<String>)> {
|
|
// let pad_id = *tokenizer
|
|
// .get_vocab(true)
|
|
// .get("<|endoftext|>")
|
|
// .ok_or(E::msg("No pad token"))?;
|
|
|
|
// The model does not work well if the text is padded using the <|endoftext|> token, using 0
|
|
// as the original OpenCLIP code.
|
|
let pad_id = 0;
|
|
|
|
let vec_seq = match sequences {
|
|
Some(seq) => seq,
|
|
None => vec![
|
|
"a cycling race".to_string(),
|
|
"a photo of two cats".to_string(),
|
|
"a robot holding a candle".to_string(),
|
|
],
|
|
};
|
|
|
|
let mut tokens = vec![];
|
|
for seq in vec_seq.clone() {
|
|
let encoding = tokenizer.encode(seq, true).map_err(E::msg)?;
|
|
tokens.push(encoding.get_ids().to_vec());
|
|
}
|
|
|
|
let max_len = tokens.iter().map(|v| v.len()).max().unwrap_or(0);
|
|
// Pad the sequences to have the same length
|
|
for token_vec in tokens.iter_mut() {
|
|
let len_diff = max_len - token_vec.len();
|
|
if len_diff > 0 {
|
|
token_vec.extend(vec![pad_id; len_diff]);
|
|
}
|
|
}
|
|
let input_ids = Tensor::new(tokens, device)?;
|
|
Ok((input_ids, vec_seq))
|
|
}
|