mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
340 lines
9.8 KiB
Rust
340 lines
9.8 KiB
Rust
//! DINOv2: Learning Robust Visual Features without Supervision
|
|
//! https://github.com/facebookresearch/dinov2
|
|
|
|
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
use clap::Parser;
|
|
|
|
use candle::{DType, IndexOp, Result, Tensor, D};
|
|
use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder};
|
|
|
|
const IMG_SIZE: usize = 518;
|
|
const PATCH_SIZE: usize = 14;
|
|
const NUM_CLASSES: usize = 1000;
|
|
|
|
fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> {
|
|
if bias {
|
|
candle_nn::linear(in_dim, out_dim, vb)
|
|
} else {
|
|
candle_nn::linear_no_bias(in_dim, out_dim, vb)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct Attention {
|
|
qkv: Linear,
|
|
proj: Linear,
|
|
num_heads: usize,
|
|
scale: f64,
|
|
}
|
|
|
|
impl Attention {
|
|
fn new(
|
|
vb: VarBuilder,
|
|
dim: usize,
|
|
num_heads: usize,
|
|
qkv_bias: bool,
|
|
proj_bias: bool,
|
|
) -> Result<Self> {
|
|
let qkv = linear(vb.pp("qkv"), dim, dim * 3, qkv_bias)?;
|
|
let proj = linear(vb.pp("proj"), dim, dim, proj_bias)?;
|
|
let scale = 1. / ((dim / num_heads) as f64).sqrt();
|
|
Ok(Self {
|
|
qkv,
|
|
proj,
|
|
num_heads,
|
|
scale,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Module for Attention {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let (b, n, c) = xs.dims3()?;
|
|
let qkv = self
|
|
.qkv
|
|
.forward(xs)?
|
|
.reshape((b, n, 3, self.num_heads, c / self.num_heads))?
|
|
.transpose(1, 2)? // 02134
|
|
.transpose(0, 1)? // 20134
|
|
.transpose(2, 3)?; // 20314
|
|
let q = (qkv.i(0)? * self.scale)?;
|
|
let k = qkv.i(1)?;
|
|
let v = qkv.i(2)?;
|
|
let attn = candle_nn::ops::softmax(&q.matmul(&k.t()?)?, D::Minus1)?;
|
|
let attn = attn.matmul(&v)?.transpose(1, 2)?.reshape((b, n, c))?;
|
|
self.proj.forward(&attn)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct LayerScale {
|
|
gamma: Tensor,
|
|
}
|
|
|
|
impl LayerScale {
|
|
fn new(vb: VarBuilder, dim: usize) -> Result<Self> {
|
|
let gamma = vb.get(dim, "gamma")?;
|
|
Ok(Self { gamma })
|
|
}
|
|
}
|
|
|
|
impl Module for LayerScale {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
xs.broadcast_mul(&self.gamma)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct Mlp {
|
|
fc1: Linear,
|
|
fc2: Linear,
|
|
}
|
|
|
|
impl Mlp {
|
|
fn new(vb: VarBuilder, in_features: usize, hidden_features: usize, bias: bool) -> Result<Self> {
|
|
let out_features = in_features;
|
|
let fc1 = linear(vb.pp("fc1"), in_features, hidden_features, bias)?;
|
|
let fc2 = linear(vb.pp("fc2"), hidden_features, out_features, bias)?;
|
|
Ok(Self { fc1, fc2 })
|
|
}
|
|
}
|
|
|
|
impl Module for Mlp {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let xs = self.fc1.forward(xs)?.gelu()?;
|
|
self.fc2.forward(&xs)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct Block {
|
|
norm1: LayerNorm,
|
|
attn: Attention,
|
|
ls1: LayerScale,
|
|
norm2: LayerNorm,
|
|
mlp: Mlp,
|
|
ls2: LayerScale,
|
|
}
|
|
|
|
impl Block {
|
|
fn new(vb: VarBuilder, dim: usize, num_heads: usize) -> Result<Self> {
|
|
let norm1 = layer_norm(dim, 1e-5, vb.pp("norm1"))?;
|
|
let attn = Attention::new(vb.pp("attn"), dim, num_heads, true, true)?;
|
|
let ls1 = LayerScale::new(vb.pp("ls1"), dim)?;
|
|
let norm2 = layer_norm(dim, 1e-5, vb.pp("norm2"))?;
|
|
let mlp = Mlp::new(vb.pp("mlp"), dim, dim * 4, true)?;
|
|
let ls2 = LayerScale::new(vb.pp("ls2"), dim)?;
|
|
Ok(Self {
|
|
norm1,
|
|
attn,
|
|
ls1,
|
|
norm2,
|
|
mlp,
|
|
ls2,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Module for Block {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let residual = xs;
|
|
let xs = self
|
|
.ls1
|
|
.forward(&self.attn.forward(&self.norm1.forward(xs)?)?)?;
|
|
let xs = (xs + residual)?;
|
|
let residual = &xs;
|
|
let xs = self
|
|
.ls2
|
|
.forward(&self.mlp.forward(&self.norm2.forward(&xs)?)?)?;
|
|
xs + residual
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct PatchEmbed {
|
|
proj: candle_nn::Conv2d,
|
|
patch_size: (usize, usize),
|
|
num_patches: usize,
|
|
}
|
|
|
|
impl PatchEmbed {
|
|
fn new(
|
|
vb: VarBuilder,
|
|
img_size: usize,
|
|
patch_size: usize,
|
|
in_chans: usize,
|
|
embed_dim: usize,
|
|
) -> Result<Self> {
|
|
let config = candle_nn::Conv2dConfig {
|
|
stride: patch_size,
|
|
..Default::default()
|
|
};
|
|
let proj = candle_nn::conv2d(in_chans, embed_dim, patch_size, config, vb.pp("proj"))?;
|
|
let num_patches = (img_size / patch_size) * (img_size / patch_size);
|
|
Ok(Self {
|
|
proj,
|
|
patch_size: (patch_size, patch_size),
|
|
num_patches,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Module for PatchEmbed {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let (_b, _c, h, w) = xs.dims4()?;
|
|
let (patch_h, patch_w) = self.patch_size;
|
|
if (h % patch_h) != 0 {
|
|
candle::bail!("image height {h} is not a multiple of patch height {patch_h}")
|
|
}
|
|
if (w % patch_w) != 0 {
|
|
candle::bail!("image width {w} is not a multiple of patch width {patch_w}")
|
|
}
|
|
let xs = self.proj.forward(xs)?;
|
|
let (b, c, h, w) = xs.dims4()?;
|
|
// flatten embeddings.
|
|
xs.reshape((b, c, h * w))?.transpose(1, 2)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct DinoVisionTransformer {
|
|
patch_embed: PatchEmbed,
|
|
cls_token: Tensor,
|
|
pos_embed: Tensor,
|
|
blocks: Vec<Block>,
|
|
norm: LayerNorm,
|
|
head: Linear,
|
|
}
|
|
|
|
impl DinoVisionTransformer {
|
|
pub fn new(vb: VarBuilder, depth: usize, embed_dim: usize, num_heads: usize) -> Result<Self> {
|
|
let patch_embed =
|
|
PatchEmbed::new(vb.pp("patch_embed"), IMG_SIZE, PATCH_SIZE, 3, embed_dim)?;
|
|
let cls_token = vb.get((1, 1, embed_dim), "cls_token")?;
|
|
let num_tokens = 1;
|
|
let pos_embed = vb.get(
|
|
(1, patch_embed.num_patches + num_tokens, embed_dim),
|
|
"pos_embed",
|
|
)?;
|
|
let head = linear(vb.pp("head"), 2 * embed_dim, NUM_CLASSES, true)?;
|
|
let norm = layer_norm(embed_dim, 1e-5, vb.pp("norm"))?;
|
|
let vb_b = vb.pp("blocks");
|
|
let blocks = (0..depth)
|
|
.map(|i| Block::new(vb_b.pp(&i.to_string()), embed_dim, num_heads))
|
|
.collect::<Result<Vec<_>>>()?;
|
|
Ok(Self {
|
|
patch_embed,
|
|
cls_token,
|
|
pos_embed,
|
|
blocks,
|
|
norm,
|
|
head,
|
|
})
|
|
}
|
|
|
|
fn interpolate_pos_encoding(&self, xs: &Tensor, w: usize, h: usize) -> Result<Tensor> {
|
|
let npatch = xs.dim(1)? - 1;
|
|
let n = self.pos_embed.dim(1)? - 1;
|
|
let sqrt_n = (n as f64).sqrt();
|
|
if npatch == n && w == h {
|
|
return Ok(xs.clone());
|
|
}
|
|
let class_pos_embed = self.pos_embed.i((.., ..1))?;
|
|
let patch_pos_embed = self.pos_embed.i((.., 1..))?;
|
|
let dim = xs.dim(D::Minus1)?;
|
|
let (w0, h0) = ((w / PATCH_SIZE) as f64 + 0.1, (h / PATCH_SIZE) as f64 + 0.1);
|
|
let patch_pos_embed = patch_pos_embed
|
|
.reshape((1, sqrt_n as usize, sqrt_n as usize, dim))?
|
|
.transpose(2, 3)?
|
|
.transpose(1, 2)?;
|
|
// This uses bicubic interpolation in the original implementation.
|
|
let patch_pos_embed = patch_pos_embed.upsample_nearest2d(h0 as usize, w0 as usize)?;
|
|
let el_count = patch_pos_embed.shape().elem_count();
|
|
let patch_pos_embed =
|
|
patch_pos_embed
|
|
.transpose(1, 2)?
|
|
.transpose(2, 3)?
|
|
.reshape((1, el_count / dim, dim))?;
|
|
Tensor::cat(&[&class_pos_embed, &patch_pos_embed], 1)
|
|
}
|
|
|
|
fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let (_b, _nc, w, h) = xs.dims4()?;
|
|
let xs = self.patch_embed.forward(xs)?;
|
|
let xs = Tensor::cat(&[&self.cls_token, &xs], 1)?;
|
|
&xs + &self.interpolate_pos_encoding(&xs, w, h)?
|
|
}
|
|
}
|
|
|
|
impl Module for DinoVisionTransformer {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let mut xs = self.prepare_tokens_with_mask(xs)?;
|
|
for blk in self.blocks.iter() {
|
|
xs = blk.forward(&xs)?
|
|
}
|
|
let xs = self.norm.forward(&xs)?;
|
|
let xs_norm_clstoken = xs.i((.., 0))?;
|
|
let xs_norm_patchtokens = xs.i((.., 1..))?.mean(1)?;
|
|
let xs = Tensor::cat(&[xs_norm_clstoken, xs_norm_patchtokens], D::Minus1)?;
|
|
self.head.forward(&xs)
|
|
}
|
|
}
|
|
|
|
pub fn vit_small(vb: VarBuilder) -> Result<DinoVisionTransformer> {
|
|
DinoVisionTransformer::new(vb, 12, 384, 6)
|
|
}
|
|
#[derive(Parser)]
|
|
struct Args {
|
|
#[arg(long)]
|
|
model: Option<String>,
|
|
|
|
#[arg(long)]
|
|
image: String,
|
|
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
}
|
|
|
|
pub fn main() -> anyhow::Result<()> {
|
|
let args = Args::parse();
|
|
|
|
let device = candle_examples::device(args.cpu)?;
|
|
|
|
let image = candle_examples::load_image224(args.image)?;
|
|
println!("loaded image {image:?}");
|
|
|
|
let model_file = match args.model {
|
|
None => {
|
|
let api = hf_hub::api::sync::Api::new()?;
|
|
let api = api.model("lmz/candle-dino-v2".into());
|
|
api.get("dinov2_vits14.safetensors")?
|
|
}
|
|
Some(model) => model.into(),
|
|
};
|
|
let weights = unsafe { candle::safetensors::MmapedFile::new(model_file)? };
|
|
let weights = weights.deserialize()?;
|
|
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, &device);
|
|
let model = vit_small(vb)?;
|
|
println!("model built");
|
|
let logits = model.forward(&image.unsqueeze(0)?)?;
|
|
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
|
|
.i(0)?
|
|
.to_vec1::<f32>()?;
|
|
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
|
|
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
|
|
for &(category_idx, pr) in prs.iter().take(5) {
|
|
println!(
|
|
"{:24}: {:.2}%",
|
|
candle_examples::IMAGENET_CLASSES[category_idx],
|
|
100. * pr
|
|
);
|
|
}
|
|
Ok(())
|
|
}
|