Files
candle/candle-transformers/src/models/beit.rs
zachcp f689ce5d39 Documentation Pass for Models (#2617)
* links in chinese_clip

* links for clip model

* add mod docs for flux and llava

* module doc for MMDIT and MIMI

* add docs for a few more modesl

* mod docs for bert naser and beit

* add module docs for convmixer colpali codegeex and chatglm

* add another series of moddocs

* add  fastvit-llama2_c

* module docs mamba -> mobileone

* module docs from moondream-phi3

* mod docs for quantized and qwen

* update to yi

* fix long names

* Update llama2_c.rs

* Update llama2_c_weights.rs

* Fix the link for mimi + tweaks

---------

Co-authored-by: Laurent Mazare <laurent.mazare@gmail.com>
2024-11-15 08:30:15 +01:00

412 lines
13 KiB
Rust

//! Based on the BEIT vision-language model.
//!
//! See "BEIT: BERT Pre-Training of Image Transformers", Bao et al. 2021
//! - [Arxiv](https://arxiv.org/abs/2106.08254)
//! - [Github](https://github.com/microsoft/unilm/tree/master/beit)
//!
use candle::{DType, Device, IndexOp, Result, Tensor, D};
use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder};
const IMG_SIZE: usize = 384;
const PATCH_SIZE: usize = 16;
const NUM_CLASSES: usize = 1000;
const WINDOW_SIZE: usize = IMG_SIZE / PATCH_SIZE; // 384 / 16 = 24
const NB_TOKENS: usize = WINDOW_SIZE * WINDOW_SIZE + 1; // 24 * 24 + 1 = 577
fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> {
if bias {
candle_nn::linear(in_dim, out_dim, vb)
} else {
candle_nn::linear_no_bias(in_dim, out_dim, vb)
}
}
#[derive(Debug)]
struct Attention {
qkv: Linear,
proj: Linear,
relative_position_bias_table: Tensor,
relative_position_index: Tensor,
num_heads: usize,
scale: f64,
}
impl Attention {
fn new(
vb: VarBuilder,
dim: usize,
num_heads: usize,
qkv_bias: bool,
proj_bias: bool,
) -> Result<Self> {
let qkv = linear(vb.pp("qkv"), dim, dim * 3, qkv_bias)?;
let proj = linear(vb.pp("proj"), dim, dim, proj_bias)?;
// num_relative_distance = token-token(47x47) + token-CLS(1) + CLS-token(1) + CLS-CLS(1) = 2212
let num_relative_distance = (2 * WINDOW_SIZE - 1) * (2 * WINDOW_SIZE - 1) + 3;
let relative_position_bias_table = vb.get(
(num_relative_distance, num_heads),
"relative_position_bias_table",
)?;
let relative_position_index =
Self::gen_relative_position_index(relative_position_bias_table.device())?;
let scale = 1. / ((dim / num_heads) as f64).sqrt();
Ok(Self {
qkv,
proj,
relative_position_bias_table,
relative_position_index,
num_heads,
scale,
})
}
}
impl Attention {
// See: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/beit.py#L61
fn gen_relative_position_index(device: &Device) -> Result<Tensor> {
let num_relative_distance = (2 * WINDOW_SIZE - 1) * (2 * WINDOW_SIZE - 1) + 3;
let w_area = WINDOW_SIZE * WINDOW_SIZE;
let t_arange: Tensor = Tensor::arange(0, WINDOW_SIZE as u32, device)?;
let t_ndgrid = Tensor::meshgrid(&[&t_arange, &t_arange], false)?;
let coords_flatten = Tensor::stack(&t_ndgrid, 0)?.flatten(1, 2)?;
let tmp1 = coords_flatten
.unsqueeze(2)?
.broadcast_as((2, w_area, w_area))?
.to_dtype(DType::I64)?;
let tmp2 = coords_flatten
.unsqueeze(1)?
.broadcast_as((2, w_area, w_area))?
.to_dtype(DType::I64)?;
let relative_coords = (tmp1 - tmp2)?
.transpose(0, 1)? // 102
.transpose(1, 2)? // 120
.contiguous()?;
let relative_coords = relative_coords.slice_assign(
&[0..w_area, 0..w_area, 0..1],
&(relative_coords.i((0..w_area, 0..w_area, 0..1))? + (WINDOW_SIZE - 1) as f64)?,
)?;
let relative_coords = relative_coords.slice_assign(
&[0..w_area, 0..w_area, 1..2],
&(relative_coords.i((0..w_area, 0..w_area, 1..2))? + (WINDOW_SIZE - 1) as f64)?,
)?;
let relative_coords = relative_coords.slice_assign(
&[0..w_area, 0..w_area, 0..1],
&(relative_coords.i((.., .., 0..1))? * (2. * (WINDOW_SIZE as f64) - 1.))?,
)?;
Tensor::zeros((w_area + 1, w_area + 1), DType::I64, device)?
.slice_assign(&[1.., 1..], &relative_coords.sum(2)?)?
.slice_assign(
&[0..1, 0..(w_area + 1)],
&(Tensor::ones((1, w_area + 1), DType::I64, device)?
* ((num_relative_distance - 3) as f64))?
.to_dtype(DType::I64)?,
)?
.slice_assign(
&[0..(w_area + 1), 0..1],
&(Tensor::ones((w_area + 1, 1), DType::I64, device)?
* ((num_relative_distance - 2) as f64))?
.to_dtype(DType::I64)?,
)?
.slice_assign(
&[0..1, 0..1],
&(Tensor::ones((1, 1), DType::I64, device)?
* ((num_relative_distance - 1) as f64))?
.to_dtype(DType::I64)?,
)
}
fn _get_rel_pos_bias(&self) -> Result<Tensor> {
self.relative_position_bias_table
.index_select(
&self
.relative_position_index
.flatten_all()?
.to_dtype(DType::U32)?,
0,
)?
.reshape((NB_TOKENS, NB_TOKENS, ()))?
.transpose(0, 1)? // 102
.transpose(0, 2)? // 201
.contiguous()?
.unsqueeze(0)
}
}
impl Module for Attention {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let (b, n, c) = xs.dims3()?;
let qkv = self
.qkv
.forward(xs)?
.reshape((b, n, 3, self.num_heads, c / self.num_heads))?
.transpose(1, 2)? // 02134
.transpose(0, 1)? // 20134
.transpose(2, 3)?; // 20314
let q = (qkv.i(0)? * self.scale)?;
let k = qkv.i(1)?.contiguous()?;
let v = qkv.i(2)?.contiguous()?;
let attn = (&q.matmul(&k.t()?)? + self._get_rel_pos_bias())?;
let attn = candle_nn::ops::softmax(&attn, D::Minus1)?;
let attn = attn.matmul(&v)?.transpose(1, 2)?.reshape((b, n, c))?;
self.proj.forward(&attn)
}
}
#[derive(Debug)]
struct LayerScale {
gamma: Tensor,
}
impl LayerScale {
fn new(vb: VarBuilder, dim: usize) -> Result<Self> {
let gamma = vb.get(dim, "gamma")?;
Ok(Self { gamma })
}
}
impl Module for LayerScale {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.broadcast_mul(&self.gamma)
}
}
#[derive(Debug)]
struct Mlp {
fc1: Linear,
fc2: Linear,
}
impl Mlp {
fn new(vb: VarBuilder, in_features: usize, hidden_features: usize, bias: bool) -> Result<Self> {
let out_features = in_features;
let fc1 = linear(vb.pp("fc1"), in_features, hidden_features, bias)?;
let fc2 = linear(vb.pp("fc2"), hidden_features, out_features, bias)?;
Ok(Self { fc1, fc2 })
}
}
impl Module for Mlp {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.fc1.forward(xs)?.gelu()?;
self.fc2.forward(&xs)
}
}
#[derive(Debug)]
struct Block {
norm1: LayerNorm,
attn: Attention,
ls1: LayerScale,
norm2: LayerNorm,
mlp: Mlp,
ls2: LayerScale,
}
impl Block {
fn new(vb: VarBuilder, dim: usize, num_heads: usize) -> Result<Self> {
let norm1 = layer_norm(dim, 1e-6, vb.pp("norm1"))?;
let attn = Attention::new(vb.pp("attn"), dim, num_heads, true, true)?;
let ls1 = LayerScale::new(vb.pp("ls1"), dim)?;
let norm2 = layer_norm(dim, 1e-6, vb.pp("norm2"))?;
let mlp = Mlp::new(vb.pp("mlp"), dim, dim * 4, true)?;
let ls2 = LayerScale::new(vb.pp("ls2"), dim)?;
Ok(Self {
norm1,
attn,
ls1,
norm2,
mlp,
ls2,
})
}
}
impl Module for Block {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let residual = xs;
let xs = self
.ls1
.forward(&self.attn.forward(&self.norm1.forward(xs)?)?)?;
let xs = (xs + residual)?;
let residual = &xs;
let xs = self
.ls2
.forward(&self.mlp.forward(&self.norm2.forward(&xs)?)?)?;
xs + residual
}
}
#[derive(Debug)]
struct PatchEmbed {
proj: candle_nn::Conv2d,
patch_size: (usize, usize),
}
impl PatchEmbed {
fn new(vb: VarBuilder, patch_size: usize, in_chans: usize, embed_dim: usize) -> Result<Self> {
let config = candle_nn::Conv2dConfig {
stride: patch_size,
..Default::default()
};
let proj = candle_nn::conv2d(in_chans, embed_dim, patch_size, config, vb.pp("proj"))?;
Ok(Self {
proj,
patch_size: (patch_size, patch_size),
})
}
}
impl Module for PatchEmbed {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let (_b, _c, h, w) = xs.dims4()?;
let (patch_h, patch_w) = self.patch_size;
if (h % patch_h) != 0 {
candle::bail!("image height {h} is not a multiple of patch height {patch_h}")
}
if (w % patch_w) != 0 {
candle::bail!("image width {w} is not a multiple of patch width {patch_w}")
}
let xs = self.proj.forward(xs)?;
let (b, c, h, w) = xs.dims4()?;
// flatten embeddings.
xs.reshape((b, c, h * w))?.transpose(1, 2)
}
}
#[derive(Debug)]
pub struct BeitVisionTransformer {
patch_embed: PatchEmbed,
cls_token: Tensor,
blocks: Vec<Block>,
norm: LayerNorm,
head: Linear,
}
impl BeitVisionTransformer {
pub fn new(vb: VarBuilder, depth: usize, embed_dim: usize, num_heads: usize) -> Result<Self> {
let patch_embed = PatchEmbed::new(vb.pp("patch_embed"), PATCH_SIZE, 3, embed_dim)?;
let cls_token = vb.get((1, 1, embed_dim), "cls_token")?;
let head = linear(vb.pp("head"), embed_dim, NUM_CLASSES, true)?;
let norm = layer_norm(embed_dim, 1e-6, vb.pp("norm"))?;
let vb_b = vb.pp("blocks");
let blocks = (0..depth)
.map(|i| Block::new(vb_b.pp(i.to_string()), embed_dim, num_heads))
.collect::<Result<Vec<_>>>()?;
Ok(Self {
patch_embed,
cls_token,
blocks,
norm,
head,
})
}
fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.patch_embed.forward(xs)?;
Tensor::cat(&[&self.cls_token, &xs], 1)
}
fn get_intermediate_layers_not_chunked(
&self,
xs: &Tensor,
blocks_to_take: &[usize],
) -> Result<Vec<Tensor>> {
let mut xs = self.prepare_tokens_with_mask(xs)?;
let mut output = Vec::new();
for (i, blk) in self.blocks.iter().enumerate() {
xs = blk.forward(&xs)?;
if blocks_to_take.contains(&i) {
output.push(xs.clone());
}
}
if output.len() != blocks_to_take.len() {
candle::bail!(
"only {} / {} blocks found",
output.len(),
blocks_to_take.len()
);
}
Ok(output)
}
pub fn get_intermediate_layers(
&self,
xs: &Tensor,
blocks_to_take: &[usize],
reshape: bool,
return_class_token: bool,
norm: bool,
) -> Result<Tensor> {
let outputs = self.get_intermediate_layers_not_chunked(xs, blocks_to_take)?;
let outputs = if norm {
outputs
.iter()
.map(|out| self.norm.forward(out))
.collect::<Result<Vec<_>>>()?
} else {
outputs
};
let class_tokens = outputs
.iter()
.map(|out| out.i((.., 0)))
.collect::<Result<Vec<_>>>()?;
let outputs = outputs
.iter()
.map(|out| out.i((.., 1..)))
.collect::<Result<Vec<_>>>()?;
let outputs = if reshape {
let (b, _c, w, h) = xs.dims4()?;
let patch_size = self.patch_embed.patch_size.0;
let num_channels = outputs[0].elem_count() / (b * (w / patch_size) * (h / patch_size));
outputs
.iter()
.map(|out| {
out.reshape((b, w / patch_size, h / patch_size, num_channels))?
.transpose(2, 3)?
.transpose(1, 2)
})
.collect::<Result<Vec<_>>>()?
} else {
outputs
};
let outputs = if return_class_token {
outputs
.iter()
.zip(class_tokens.iter())
.map(|(out, class_token)| Tensor::cat(&[out, class_token], D::Minus1))
.collect::<Result<Vec<_>>>()?
} else {
outputs
};
Tensor::stack(&outputs[..], 0)
}
}
impl Module for BeitVisionTransformer {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let mut xs = self.prepare_tokens_with_mask(xs)?;
for blk in self.blocks.iter() {
xs = blk.forward(&xs)?
}
let xs_moy_local_tokens = xs.i((.., 1..))?.mean(1)?;
let xs_norm = self.norm.forward(&xs_moy_local_tokens)?;
self.head.forward(&xs_norm)
}
}
pub fn vit_base(vb: VarBuilder) -> Result<BeitVisionTransformer> {
BeitVisionTransformer::new(vb, 12, 768, 12)
}
pub fn vit_large(vb: VarBuilder) -> Result<BeitVisionTransformer> {
BeitVisionTransformer::new(vb, 24, 1024, 16)
}