mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00

* Quantized phi in a separate file. * Add the quantized phi example + rework the model code. * Improve the phi model. * Get some generation out. * Use the appropriate rope shape. * Tweak the default prompt. --------- Co-authored-by: Jane Doe <jane.doe@example.org>
274 lines
8.8 KiB
Rust
274 lines
8.8 KiB
Rust
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
use clap::{Parser, ValueEnum};
|
|
use std::io::Write;
|
|
use tokenizers::Tokenizer;
|
|
|
|
use candle::quantized::gguf_file;
|
|
use candle::Tensor;
|
|
use candle_transformers::generation::{LogitsProcessor, Sampling};
|
|
|
|
use candle_examples::token_output_stream::TokenOutputStream;
|
|
use candle_transformers::models::quantized_phi as model;
|
|
use model::ModelWeights;
|
|
|
|
const DEFAULT_PROMPT: &str = "Write a function to count prime numbers up to N. ";
|
|
|
|
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
|
|
enum Which {
|
|
#[value(name = "phi-2")]
|
|
Phi2,
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// GGUF file to load, typically a .gguf file generated by the quantize command from llama.cpp
|
|
#[arg(long)]
|
|
model: Option<String>,
|
|
|
|
/// The initial prompt, use 'interactive' for entering multiple prompts in an interactive way
|
|
/// and 'chat' for an interactive model where history of previous prompts and generated tokens
|
|
/// is preserved.
|
|
#[arg(long)]
|
|
prompt: Option<String>,
|
|
|
|
/// The length of the sample to generate (in tokens).
|
|
#[arg(short = 'n', long, default_value_t = 1000)]
|
|
sample_len: usize,
|
|
|
|
/// The tokenizer config in json format.
|
|
#[arg(long)]
|
|
tokenizer: Option<String>,
|
|
|
|
/// The temperature used to generate samples, use 0 for greedy sampling.
|
|
#[arg(long, default_value_t = 0.8)]
|
|
temperature: f64,
|
|
|
|
/// Nucleus sampling probability cutoff.
|
|
#[arg(long)]
|
|
top_p: Option<f64>,
|
|
|
|
/// Only sample among the top K samples.
|
|
#[arg(long)]
|
|
top_k: Option<usize>,
|
|
|
|
/// The seed to use when generating random samples.
|
|
#[arg(long, default_value_t = 299792458)]
|
|
seed: u64,
|
|
|
|
/// Enable tracing (generates a trace-timestamp.json file).
|
|
#[arg(long)]
|
|
tracing: bool,
|
|
|
|
/// Process prompt elements separately.
|
|
#[arg(long)]
|
|
split_prompt: bool,
|
|
|
|
/// Run on CPU rather than GPU even if a GPU is available.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
|
#[arg(long, default_value_t = 1.1)]
|
|
repeat_penalty: f32,
|
|
|
|
/// The context size to consider for the repeat penalty.
|
|
#[arg(long, default_value_t = 64)]
|
|
repeat_last_n: usize,
|
|
|
|
/// The model size to use.
|
|
#[arg(long, default_value = "phi-2")]
|
|
which: Which,
|
|
}
|
|
|
|
impl Args {
|
|
fn tokenizer(&self) -> anyhow::Result<Tokenizer> {
|
|
let tokenizer_path = match &self.tokenizer {
|
|
Some(config) => std::path::PathBuf::from(config),
|
|
None => {
|
|
let api = hf_hub::api::sync::Api::new()?;
|
|
let api = api.model("microsoft/phi-2".to_string());
|
|
api.get("tokenizer.json")?
|
|
}
|
|
};
|
|
Tokenizer::from_file(tokenizer_path).map_err(anyhow::Error::msg)
|
|
}
|
|
|
|
fn model(&self) -> anyhow::Result<std::path::PathBuf> {
|
|
let model_path = match &self.model {
|
|
Some(config) => std::path::PathBuf::from(config),
|
|
None => {
|
|
let (repo, filename) = match self.which {
|
|
Which::Phi2 => ("TheBloke/phi-2-GGUF", "phi-2.Q4_K_M.gguf"),
|
|
};
|
|
let api = hf_hub::api::sync::Api::new()?;
|
|
let api = api.model(repo.to_string());
|
|
api.get(filename)?
|
|
}
|
|
};
|
|
Ok(model_path)
|
|
}
|
|
}
|
|
|
|
fn format_size(size_in_bytes: usize) -> String {
|
|
if size_in_bytes < 1_000 {
|
|
format!("{}B", size_in_bytes)
|
|
} else if size_in_bytes < 1_000_000 {
|
|
format!("{:.2}KB", size_in_bytes as f64 / 1e3)
|
|
} else if size_in_bytes < 1_000_000_000 {
|
|
format!("{:.2}MB", size_in_bytes as f64 / 1e6)
|
|
} else {
|
|
format!("{:.2}GB", size_in_bytes as f64 / 1e9)
|
|
}
|
|
}
|
|
|
|
fn main() -> anyhow::Result<()> {
|
|
use tracing_chrome::ChromeLayerBuilder;
|
|
use tracing_subscriber::prelude::*;
|
|
|
|
let args = Args::parse();
|
|
let _guard = if args.tracing {
|
|
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
|
tracing_subscriber::registry().with(chrome_layer).init();
|
|
Some(guard)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
println!(
|
|
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
|
candle::utils::with_avx(),
|
|
candle::utils::with_neon(),
|
|
candle::utils::with_simd128(),
|
|
candle::utils::with_f16c()
|
|
);
|
|
println!(
|
|
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
|
args.temperature, args.repeat_penalty, args.repeat_last_n
|
|
);
|
|
|
|
let model_path = args.model()?;
|
|
let mut file = std::fs::File::open(&model_path)?;
|
|
let start = std::time::Instant::now();
|
|
let device = candle_examples::device(args.cpu)?;
|
|
|
|
let mut model = {
|
|
let model = gguf_file::Content::read(&mut file).map_err(|e| e.with_path(model_path))?;
|
|
let mut total_size_in_bytes = 0;
|
|
for (_, tensor) in model.tensor_infos.iter() {
|
|
let elem_count = tensor.shape.elem_count();
|
|
total_size_in_bytes +=
|
|
elem_count * tensor.ggml_dtype.type_size() / tensor.ggml_dtype.block_size();
|
|
}
|
|
println!(
|
|
"loaded {:?} tensors ({}) in {:.2}s",
|
|
model.tensor_infos.len(),
|
|
&format_size(total_size_in_bytes),
|
|
start.elapsed().as_secs_f32(),
|
|
);
|
|
ModelWeights::from_gguf(model, &mut file, &device)?
|
|
};
|
|
println!("model built");
|
|
|
|
let tokenizer = args.tokenizer()?;
|
|
let mut tos = TokenOutputStream::new(tokenizer);
|
|
let prompt_str = args.prompt.unwrap_or_else(|| DEFAULT_PROMPT.to_string());
|
|
print!("{}", &prompt_str);
|
|
let tokens = tos
|
|
.tokenizer()
|
|
.encode(prompt_str, true)
|
|
.map_err(anyhow::Error::msg)?;
|
|
let tokens = tokens.get_ids();
|
|
let to_sample = args.sample_len.saturating_sub(1);
|
|
let mut all_tokens = vec![];
|
|
let mut logits_processor = {
|
|
let temperature = args.temperature;
|
|
let sampling = if temperature <= 0. {
|
|
Sampling::ArgMax
|
|
} else {
|
|
match (args.top_k, args.top_p) {
|
|
(None, None) => Sampling::All { temperature },
|
|
(Some(k), None) => Sampling::TopK { k, temperature },
|
|
(None, Some(p)) => Sampling::TopP { p, temperature },
|
|
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature },
|
|
}
|
|
};
|
|
LogitsProcessor::from_sampling(args.seed, sampling)
|
|
};
|
|
|
|
let start_prompt_processing = std::time::Instant::now();
|
|
let mut next_token = if !args.split_prompt {
|
|
let input = Tensor::new(tokens, &device)?.unsqueeze(0)?;
|
|
let logits = model.forward(&input, 0)?;
|
|
let logits = logits.squeeze(0)?;
|
|
logits_processor.sample(&logits)?
|
|
} else {
|
|
let mut next_token = 0;
|
|
for (pos, token) in tokens.iter().enumerate() {
|
|
let input = Tensor::new(&[*token], &device)?.unsqueeze(0)?;
|
|
let logits = model.forward(&input, pos)?;
|
|
let logits = logits.squeeze(0)?;
|
|
next_token = logits_processor.sample(&logits)?
|
|
}
|
|
next_token
|
|
};
|
|
let prompt_dt = start_prompt_processing.elapsed();
|
|
all_tokens.push(next_token);
|
|
if let Some(t) = tos.next_token(next_token)? {
|
|
print!("{t}");
|
|
std::io::stdout().flush()?;
|
|
}
|
|
let eos_token = *tos
|
|
.tokenizer()
|
|
.get_vocab(true)
|
|
.get("<|endoftext|>")
|
|
.unwrap();
|
|
let start_post_prompt = std::time::Instant::now();
|
|
let mut sampled = 0;
|
|
for index in 0..to_sample {
|
|
let input = Tensor::new(&[next_token], &device)?.unsqueeze(0)?;
|
|
let logits = model.forward(&input, tokens.len() + index)?;
|
|
let logits = logits.squeeze(0)?;
|
|
let logits = if args.repeat_penalty == 1. {
|
|
logits
|
|
} else {
|
|
let start_at = all_tokens.len().saturating_sub(args.repeat_last_n);
|
|
candle_transformers::utils::apply_repeat_penalty(
|
|
&logits,
|
|
args.repeat_penalty,
|
|
&all_tokens[start_at..],
|
|
)?
|
|
};
|
|
next_token = logits_processor.sample(&logits)?;
|
|
all_tokens.push(next_token);
|
|
if let Some(t) = tos.next_token(next_token)? {
|
|
print!("{t}");
|
|
std::io::stdout().flush()?;
|
|
}
|
|
sampled += 1;
|
|
if next_token == eos_token {
|
|
break;
|
|
};
|
|
}
|
|
if let Some(rest) = tos.decode_rest().map_err(candle::Error::msg)? {
|
|
print!("{rest}");
|
|
}
|
|
std::io::stdout().flush()?;
|
|
let dt = start_post_prompt.elapsed();
|
|
println!(
|
|
"\n\n{:4} prompt tokens processed: {:.2} token/s",
|
|
tokens.len(),
|
|
tokens.len() as f64 / prompt_dt.as_secs_f64(),
|
|
);
|
|
println!(
|
|
"{sampled:4} tokens generated: {:.2} token/s",
|
|
sampled as f64 / dt.as_secs_f64(),
|
|
);
|
|
Ok(())
|
|
}
|