Files
candle/candle-core/benches/benchmarks/copy.rs
Laurent Mazare e98754fc5a Optimize Tensor::new when called on nested Vec<..>. (#2927)
* Optimize Tensor::new when called on nested Vec<..>.

* Improve performance.

* Similar flattening for the 4d case.

* More tweaks.

* Add some dummy test.
2025-04-28 09:19:45 +02:00

39 lines
1.4 KiB
Rust

use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{Device, Tensor, WithDType};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run_copy_mask_benchmark<D: WithDType>(c: &mut Criterion, device: &Device, name: &str) {
let batch_size = 128;
let in_seq_len = 1;
let kv_seq_len = 1024;
let attn_mask = vec![vec![vec![D::zero(); kv_seq_len]; in_seq_len]; batch_size];
let size_in_bytes = batch_size * in_seq_len * kv_seq_len * D::DTYPE.size_in_bytes();
let mut group = c.benchmark_group(device.bench_name(name));
group.throughput(Throughput::Bytes(size_in_bytes as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let attn_masks = vec![attn_mask.clone(); iters as usize];
let start = Instant::now();
for attn_mask in attn_masks.into_iter() {
let tensor = Tensor::new(black_box(attn_mask), device).unwrap();
black_box(tensor);
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn criterion_benchmark(c: &mut Criterion) {
let handler = BenchDeviceHandler::new().unwrap();
for device in handler.devices {
run_copy_mask_benchmark::<f32>(c, &device, "copy_mask");
}
}
criterion_group!(benches, criterion_benchmark);