mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 03:54:56 +00:00
154 lines
4.5 KiB
Rust
154 lines
4.5 KiB
Rust
pub mod coco_classes;
|
|
pub mod imagenet;
|
|
pub mod object_detection;
|
|
|
|
use candle::{Device, Result, Tensor};
|
|
|
|
pub fn device(cpu: bool) -> Result<Device> {
|
|
if cpu {
|
|
Ok(Device::Cpu)
|
|
} else {
|
|
let device = Device::cuda_if_available(0)?;
|
|
if !device.is_cuda() {
|
|
println!("Running on CPU, to run on GPU, build this example with `--features cuda`");
|
|
}
|
|
Ok(device)
|
|
}
|
|
}
|
|
|
|
pub fn load_image_and_resize<P: AsRef<std::path::Path>>(
|
|
p: P,
|
|
width: usize,
|
|
height: usize,
|
|
) -> Result<Tensor> {
|
|
let img = image::io::Reader::open(p)?
|
|
.decode()
|
|
.map_err(candle::Error::wrap)?
|
|
.resize_to_fill(
|
|
width as u32,
|
|
height as u32,
|
|
image::imageops::FilterType::Triangle,
|
|
);
|
|
let img = img.to_rgb8();
|
|
let data = img.into_raw();
|
|
Tensor::from_vec(data, (width, height, 3), &Device::Cpu)?.permute((2, 0, 1))
|
|
}
|
|
|
|
/// Saves an image to disk using the image crate, this expects an input with shape
|
|
/// (c, width, height).
|
|
pub fn save_image<P: AsRef<std::path::Path>>(img: &Tensor, p: P) -> Result<()> {
|
|
let p = p.as_ref();
|
|
let (channel, width, height) = img.dims3()?;
|
|
if channel != 3 {
|
|
candle::bail!("save_image expects an input of shape (3, width, height)")
|
|
}
|
|
let img = img.transpose(0, 1)?.t()?.flatten_all()?;
|
|
let pixels = img.to_vec1::<u8>()?;
|
|
let image: image::ImageBuffer<image::Rgb<u8>, Vec<u8>> =
|
|
match image::ImageBuffer::from_raw(width as u32, height as u32, pixels) {
|
|
Some(image) => image,
|
|
None => candle::bail!("error saving image {p:?}"),
|
|
};
|
|
image.save(p).map_err(candle::Error::wrap)?;
|
|
Ok(())
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
// NOTE: Waiting on https://github.com/rust-lang/mdBook/pull/1856
|
|
#[rustfmt::skip]
|
|
#[tokio::test]
|
|
async fn book_hub_1() {
|
|
// ANCHOR: book_hub_1
|
|
use candle::Device;
|
|
use hf_hub::api::tokio::Api;
|
|
|
|
let api = Api::new().unwrap();
|
|
let repo = api.model("bert-base-uncased".to_string());
|
|
|
|
let weights_filename = repo.get("model.safetensors").await.unwrap();
|
|
|
|
let weights = candle::safetensors::load(weights_filename, &Device::Cpu).unwrap();
|
|
// ANCHOR_END: book_hub_1
|
|
assert_eq!(weights.len(), 206);
|
|
}
|
|
|
|
#[rustfmt::skip]
|
|
#[test]
|
|
fn book_hub_2() {
|
|
// ANCHOR: book_hub_2
|
|
use candle::Device;
|
|
use hf_hub::api::sync::Api;
|
|
use memmap2::Mmap;
|
|
use std::fs;
|
|
|
|
let api = Api::new().unwrap();
|
|
let repo = api.model("bert-base-uncased".to_string());
|
|
let weights_filename = repo.get("model.safetensors").unwrap();
|
|
|
|
let file = fs::File::open(weights_filename).unwrap();
|
|
let mmap = unsafe { Mmap::map(&file).unwrap() };
|
|
let weights = candle::safetensors::load_buffer(&mmap[..], &Device::Cpu).unwrap();
|
|
// ANCHOR_END: book_hub_2
|
|
assert_eq!(weights.len(), 206);
|
|
}
|
|
|
|
#[rustfmt::skip]
|
|
#[test]
|
|
fn book_hub_3() {
|
|
// ANCHOR: book_hub_3
|
|
use candle::{DType, Device, Tensor};
|
|
use hf_hub::api::sync::Api;
|
|
use memmap2::Mmap;
|
|
use safetensors::slice::IndexOp;
|
|
use safetensors::SafeTensors;
|
|
use std::fs;
|
|
|
|
let api = Api::new().unwrap();
|
|
let repo = api.model("bert-base-uncased".to_string());
|
|
let weights_filename = repo.get("model.safetensors").unwrap();
|
|
|
|
let file = fs::File::open(weights_filename).unwrap();
|
|
let mmap = unsafe { Mmap::map(&file).unwrap() };
|
|
|
|
// Use safetensors directly
|
|
let tensors = SafeTensors::deserialize(&mmap[..]).unwrap();
|
|
let view = tensors
|
|
.tensor("bert.encoder.layer.0.attention.self.query.weight")
|
|
.unwrap();
|
|
|
|
// We're going to load shard with rank 1, within a world_size of 4
|
|
// We're going to split along dimension 0 doing VIEW[start..stop, :]
|
|
let rank = 1;
|
|
let world_size = 4;
|
|
let dim = 0;
|
|
let dtype = view.dtype();
|
|
let mut tp_shape = view.shape().to_vec();
|
|
let size = tp_shape[0];
|
|
|
|
if size % world_size != 0 {
|
|
panic!("The dimension is not divisble by `world_size`");
|
|
}
|
|
let block_size = size / world_size;
|
|
let start = rank * block_size;
|
|
let stop = (rank + 1) * block_size;
|
|
|
|
// Everything is expressed in tensor dimension
|
|
// bytes offsets is handled automatically for safetensors.
|
|
|
|
let iterator = view.slice(start..stop).unwrap();
|
|
|
|
tp_shape[dim] = block_size;
|
|
|
|
// Convert safetensors Dtype to candle DType
|
|
let dtype: DType = dtype.try_into().unwrap();
|
|
|
|
// TODO: Implement from_buffer_iterator so we can skip the extra CPU alloc.
|
|
let raw: Vec<u8> = iterator.into_iter().flatten().cloned().collect();
|
|
let tp_tensor = Tensor::from_raw_buffer(&raw, dtype, &tp_shape, &Device::Cpu).unwrap();
|
|
// ANCHOR_END: book_hub_3
|
|
assert_eq!(view.shape(), &[768, 768]);
|
|
assert_eq!(tp_tensor.dims(), &[192, 768]);
|
|
}
|
|
}
|