mirror of
https://github.com/huggingface/candle.git
synced 2025-06-20 20:09:50 +00:00
148 lines
3.8 KiB
Rust
148 lines
3.8 KiB
Rust
use candle::{Result, Tensor};
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub struct Cache {
|
|
// all_data is an option on a Tensor, this makes it possible to only create the actual tensor
|
|
// on the first call where the batch size is easily known.
|
|
// Also this makes it safe to clone a KvCache that has been reseted (as in it will not share
|
|
// its internal state with the cloned instance).
|
|
all_data: Option<Tensor>,
|
|
dim: usize,
|
|
current_seq_len: usize,
|
|
max_seq_len: usize,
|
|
}
|
|
|
|
impl Cache {
|
|
pub fn new(dim: usize, max_seq_len: usize) -> Self {
|
|
Self {
|
|
all_data: None,
|
|
dim,
|
|
current_seq_len: 0,
|
|
max_seq_len,
|
|
}
|
|
}
|
|
|
|
pub fn dim(&self) -> usize {
|
|
self.dim
|
|
}
|
|
|
|
pub fn current_seq_len(&self) -> usize {
|
|
self.current_seq_len
|
|
}
|
|
|
|
pub fn max_seq_len(&self) -> usize {
|
|
self.max_seq_len
|
|
}
|
|
|
|
pub fn all_data(&self) -> &Option<Tensor> {
|
|
&self.all_data
|
|
}
|
|
|
|
pub fn current_data(&self) -> Result<Option<Tensor>> {
|
|
let data = match self.all_data.as_ref() {
|
|
None => None,
|
|
Some(d) => Some(d.narrow(self.dim, 0, self.current_seq_len)?),
|
|
};
|
|
Ok(data)
|
|
}
|
|
|
|
pub fn reset(&mut self) {
|
|
self.current_seq_len = 0;
|
|
self.all_data = None;
|
|
}
|
|
|
|
pub fn append(&mut self, src: &Tensor) -> Result<()> {
|
|
let seq_len = src.dim(self.dim)?;
|
|
// This doesn't seem very idiomatic but because the creation can fail, it's tricky to use
|
|
// self.all_data.get_or_insert_with.
|
|
if self.all_data.is_none() {
|
|
let mut shape = src.dims().to_vec();
|
|
shape[self.dim] = self.max_seq_len;
|
|
let ad = Tensor::zeros(shape, src.dtype(), src.device())?;
|
|
self.all_data = Some(ad)
|
|
};
|
|
let ad = self.all_data.as_mut().unwrap();
|
|
if self.current_seq_len + seq_len > self.max_seq_len {
|
|
candle::bail!(
|
|
"kv-cache: above max-seq-len {}+{seq_len}>{}",
|
|
self.current_seq_len,
|
|
self.max_seq_len
|
|
)
|
|
}
|
|
ad.slice_set(src, self.dim, self.current_seq_len)?;
|
|
self.current_seq_len += seq_len;
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub struct KvCache {
|
|
k: Cache,
|
|
v: Cache,
|
|
}
|
|
|
|
impl KvCache {
|
|
pub fn new(dim: usize, max_seq_len: usize) -> Self {
|
|
let k = Cache::new(dim, max_seq_len);
|
|
let v = Cache::new(dim, max_seq_len);
|
|
Self { k, v }
|
|
}
|
|
|
|
pub fn k_cache(&self) -> &Cache {
|
|
&self.k
|
|
}
|
|
|
|
pub fn v_cache(&self) -> &Cache {
|
|
&self.v
|
|
}
|
|
|
|
pub fn k_cache_mut(&mut self) -> &mut Cache {
|
|
&mut self.k
|
|
}
|
|
|
|
pub fn v_cache_mut(&mut self) -> &mut Cache {
|
|
&mut self.v
|
|
}
|
|
|
|
pub fn k(&self) -> Result<Option<Tensor>> {
|
|
self.k.current_data()
|
|
}
|
|
|
|
pub fn v(&self) -> Result<Option<Tensor>> {
|
|
self.v.current_data()
|
|
}
|
|
|
|
pub fn append(&mut self, k: &Tensor, v: &Tensor) -> Result<(Tensor, Tensor)> {
|
|
self.k.append(k)?;
|
|
self.v.append(v)?;
|
|
let out_k = self.k.current_data()?;
|
|
let out_v = self.v.current_data()?;
|
|
let k = match out_k {
|
|
None => {
|
|
let mut shape = k.dims().to_vec();
|
|
shape[self.k.dim] = 0;
|
|
Tensor::zeros(shape, k.dtype(), k.device())?
|
|
}
|
|
Some(k) => k,
|
|
};
|
|
let v = match out_v {
|
|
None => {
|
|
let mut shape = v.dims().to_vec();
|
|
shape[self.k.dim] = 0;
|
|
Tensor::zeros(shape, v.dtype(), v.device())?
|
|
}
|
|
Some(v) => v,
|
|
};
|
|
Ok((k, v))
|
|
}
|
|
|
|
pub fn current_seq_len(&self) -> usize {
|
|
self.k.current_seq_len()
|
|
}
|
|
|
|
pub fn reset(&mut self) {
|
|
self.k.reset();
|
|
self.v.reset();
|
|
}
|
|
}
|