mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 18:28:24 +00:00

* Add a custom softmax implementation. * Add softmaxlastdim to the benchmarks. * And add a test. * Support more dtypes. * Polish the code. * Use the slow implementation on cuda. * Add a todo for the cuda kernel.
177 lines
4.8 KiB
Rust
177 lines
4.8 KiB
Rust
/// This example contains some simple benchmarks so that it's easy to run them in perf etc.
|
|
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
use candle::quantized::GgmlType;
|
|
use candle::{Device, Result, Tensor, D};
|
|
use clap::{Parser, Subcommand};
|
|
|
|
trait Benchmark {
|
|
type PreProcessData;
|
|
type RunResult;
|
|
|
|
fn preprocess() -> Result<Self::PreProcessData>;
|
|
fn run_one(_: &Self::PreProcessData) -> Result<Self::RunResult>;
|
|
|
|
const ITERS: usize;
|
|
}
|
|
|
|
// Conv1d example as used in whisper.
|
|
struct Conv1d;
|
|
impl Benchmark for Conv1d {
|
|
type PreProcessData = (Tensor, Tensor);
|
|
type RunResult = Tensor;
|
|
fn preprocess() -> Result<Self::PreProcessData> {
|
|
let inp = Tensor::randn(0f32, 1., (1, 384, 3000), &Device::Cpu)?;
|
|
let w = Tensor::randn(0f32, 1., (384, 384, 3), &Device::Cpu)?;
|
|
Ok((inp, w))
|
|
}
|
|
|
|
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
|
|
d.0.conv1d(&d.1, 0, 1, 1, 1)
|
|
}
|
|
|
|
const ITERS: usize = 5;
|
|
}
|
|
|
|
// Conv2d example as used in stable-diffusion.
|
|
struct Conv2d;
|
|
impl Benchmark for Conv2d {
|
|
type PreProcessData = (Tensor, Tensor);
|
|
type RunResult = Tensor;
|
|
|
|
fn preprocess() -> Result<Self::PreProcessData> {
|
|
let inp = Tensor::randn(0f32, 1., (2, 320, 96, 96), &Device::Cpu)?;
|
|
let w = Tensor::randn(0f32, 1., (320, 320, 3, 3), &Device::Cpu)?;
|
|
Ok((inp, w))
|
|
}
|
|
|
|
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
|
|
d.0.conv2d(&d.1, 0, 1, 1, 1)
|
|
}
|
|
|
|
const ITERS: usize = 1;
|
|
}
|
|
|
|
struct Matmul;
|
|
impl Benchmark for Matmul {
|
|
type PreProcessData = (Tensor, Tensor);
|
|
type RunResult = Tensor;
|
|
fn preprocess() -> Result<Self::PreProcessData> {
|
|
let lhs = Tensor::randn(0f32, 1., (1024, 1024), &Device::Cpu)?;
|
|
let rhs = Tensor::randn(0f32, 1., (1024, 1024), &Device::Cpu)?;
|
|
Ok((lhs, rhs))
|
|
}
|
|
|
|
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
|
|
d.0.matmul(&d.1)
|
|
}
|
|
|
|
const ITERS: usize = 100;
|
|
}
|
|
|
|
// This benchmark is similar to:
|
|
// https://github.com/ggerganov/llama.cpp/blob/master/examples/benchmark/benchmark-matmult.cpp
|
|
struct QMatMul;
|
|
impl Benchmark for QMatMul {
|
|
type PreProcessData = (candle::quantized::QMatMul, Tensor);
|
|
type RunResult = Tensor;
|
|
fn preprocess() -> Result<Self::PreProcessData> {
|
|
let zeros = vec![candle::quantized::k_quants::BlockQ4_0::zeros(); 4096 * 11008 / 32];
|
|
let mm = candle::quantized::QTensor::new(zeros, (4096, 11008))?;
|
|
let mm = candle::quantized::QMatMul::from_qtensor(mm);
|
|
let arg = Tensor::randn(0f32, 1., (128, 11008), &Device::Cpu)?;
|
|
Ok((mm, arg))
|
|
}
|
|
|
|
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
|
|
d.0.forward(&d.1)
|
|
}
|
|
|
|
const ITERS: usize = 100;
|
|
}
|
|
|
|
struct Softmax;
|
|
impl Benchmark for Softmax {
|
|
type PreProcessData = Tensor;
|
|
type RunResult = Tensor;
|
|
fn preprocess() -> Result<Self::PreProcessData> {
|
|
// Typical whisper tiny size.
|
|
let x = Tensor::randn(0f32, 1., (1, 6, 200, 1500), &Device::Cpu)?;
|
|
Ok(x)
|
|
}
|
|
|
|
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
|
|
candle_nn::ops::softmax(d, D::Minus1)
|
|
}
|
|
|
|
const ITERS: usize = 100;
|
|
}
|
|
|
|
struct SoftmaxLastDim;
|
|
impl Benchmark for SoftmaxLastDim {
|
|
type PreProcessData = Tensor;
|
|
type RunResult = Tensor;
|
|
fn preprocess() -> Result<Self::PreProcessData> {
|
|
// Typical whisper tiny size.
|
|
let x = Tensor::randn(0f32, 1., (1, 6, 200, 1500), &Device::Cpu)?;
|
|
Ok(x)
|
|
}
|
|
|
|
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
|
|
candle_nn::ops::softmax_last_dim(d)
|
|
}
|
|
|
|
const ITERS: usize = 100;
|
|
}
|
|
|
|
fn run<B: Benchmark>(iters: Option<usize>) -> Result<()> {
|
|
use std::hint::black_box;
|
|
|
|
let iters = iters.unwrap_or(B::ITERS);
|
|
let d = B::preprocess()?;
|
|
let start = std::time::Instant::now();
|
|
for _iter in 0..iters {
|
|
let _res = black_box(B::run_one(black_box(&d))?);
|
|
}
|
|
println!("{:?}", start.elapsed() / iters as u32);
|
|
Ok(())
|
|
}
|
|
|
|
#[derive(Subcommand, Debug, Clone)]
|
|
enum Task {
|
|
Conv1d,
|
|
Conv2d,
|
|
Matmul,
|
|
Qmatmul,
|
|
Softmax,
|
|
SoftmaxLastDim,
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
pub struct Args {
|
|
/// The benchmark to be run.
|
|
#[command(subcommand)]
|
|
task: Task,
|
|
|
|
#[arg(long)]
|
|
iters: Option<usize>,
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
let args = Args::parse();
|
|
match args.task {
|
|
Task::Conv1d => run::<Conv1d>(args.iters)?,
|
|
Task::Conv2d => run::<Conv2d>(args.iters)?,
|
|
Task::Matmul => run::<Matmul>(args.iters)?,
|
|
Task::Softmax => run::<Softmax>(args.iters)?,
|
|
Task::SoftmaxLastDim => run::<SoftmaxLastDim>(args.iters)?,
|
|
Task::Qmatmul => run::<QMatMul>(args.iters)?,
|
|
}
|
|
Ok(())
|
|
}
|