Files
candle/candle-core/benches/benchmarks/reduce.rs
2024-01-22 12:30:16 +01:00

67 lines
1.8 KiB
Rust

use crate::benchmarks::{bench_name, device, BenchDevice};
use candle_core::{DType, Device, Tensor};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run_sum(a: &Tensor) {
a.sum(2).unwrap();
}
fn run_arg_min(a: &Tensor) {
a.argmin(2).unwrap();
}
fn criterion_benchmark(c: &mut Criterion) {
let device = device().unwrap();
run_reduce(c, &device);
run_arg_reduce(c, &device);
}
fn run_reduce(c: &mut Criterion, device: &Device) {
let b = 1;
let m = 2048;
let k = 2048;
let a = Tensor::rand(-1000.0f32, 1000.0f32, (b, m, k), &device).unwrap();
let flops = b * m * k * DType::F32.size_in_bytes();
let mut group = c.benchmark_group(bench_name("reduce"));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
run_sum(black_box(&a));
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn run_arg_reduce(c: &mut Criterion, device: &Device) {
let b = 1;
let m = 2048;
let k = 2048;
let a = Tensor::rand(-1000.0f32, 1000.0f32, (b, m, k), &device).unwrap();
let flops = b * m * k * DType::F32.size_in_bytes();
let mut group = c.benchmark_group(bench_name("arg_reduce"));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
run_arg_min(black_box(&a));
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
criterion_group!(benches, criterion_benchmark);