mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 11:08:52 +00:00
140 lines
3.2 KiB
Rust
140 lines
3.2 KiB
Rust
//! Convolution Layers.
|
|
use candle::{Result, Tensor};
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
pub struct Conv1dConfig {
|
|
pub padding: usize,
|
|
pub stride: usize,
|
|
}
|
|
|
|
impl Default for Conv1dConfig {
|
|
fn default() -> Self {
|
|
Self {
|
|
padding: 0,
|
|
stride: 1,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct Conv1d {
|
|
weight: Tensor,
|
|
bias: Option<Tensor>,
|
|
config: Conv1dConfig,
|
|
}
|
|
|
|
impl Conv1d {
|
|
pub fn new(weight: Tensor, bias: Option<Tensor>, config: Conv1dConfig) -> Self {
|
|
Self {
|
|
weight,
|
|
bias,
|
|
config,
|
|
}
|
|
}
|
|
|
|
pub fn config(&self) -> &Conv1dConfig {
|
|
&self.config
|
|
}
|
|
|
|
pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
|
let x = x.conv1d(&self.weight, self.config.padding, self.config.stride)?;
|
|
match &self.bias {
|
|
None => Ok(x),
|
|
Some(bias) => {
|
|
let b = bias.dims1()?;
|
|
let bias = bias.reshape((1, b, 1))?;
|
|
Ok(x.broadcast_add(&bias)?)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
pub struct Conv2dConfig {
|
|
pub padding: usize,
|
|
pub stride: usize,
|
|
}
|
|
|
|
impl Default for Conv2dConfig {
|
|
fn default() -> Self {
|
|
Self {
|
|
padding: 0,
|
|
stride: 1,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[allow(dead_code)]
|
|
#[derive(Debug)]
|
|
pub struct Conv2d {
|
|
weight: Tensor,
|
|
bias: Option<Tensor>,
|
|
config: Conv2dConfig,
|
|
}
|
|
|
|
impl Conv2d {
|
|
pub fn new(weight: Tensor, bias: Option<Tensor>, config: Conv2dConfig) -> Self {
|
|
Self {
|
|
weight,
|
|
bias,
|
|
config,
|
|
}
|
|
}
|
|
|
|
pub fn config(&self) -> &Conv2dConfig {
|
|
&self.config
|
|
}
|
|
|
|
pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
|
let x = x.conv2d(&self.weight, self.config.padding, self.config.stride)?;
|
|
match &self.bias {
|
|
None => Ok(x),
|
|
Some(bias) => {
|
|
let b = bias.dims1()?;
|
|
let bias = bias.reshape((1, b, 1, 1))?;
|
|
Ok(x.broadcast_add(&bias)?)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn conv1d(
|
|
in_channels: usize,
|
|
out_channels: usize,
|
|
kernel_size: usize,
|
|
cfg: Conv1dConfig,
|
|
vs: crate::VarBuilder,
|
|
) -> Result<Conv1d> {
|
|
let init_ws = crate::init::DEFAULT_KAIMING_NORMAL;
|
|
let ws = vs.get_or_init((out_channels, in_channels, kernel_size), "weight", init_ws)?;
|
|
let bound = 1. / (in_channels as f64).sqrt();
|
|
let init_bs = crate::Init::Uniform {
|
|
lo: -bound,
|
|
up: bound,
|
|
};
|
|
let bs = vs.get_or_init(out_channels, "bias", init_bs)?;
|
|
Ok(Conv1d::new(ws, Some(bs), cfg))
|
|
}
|
|
|
|
pub fn conv2d(
|
|
in_channels: usize,
|
|
out_channels: usize,
|
|
kernel_size: usize,
|
|
cfg: Conv2dConfig,
|
|
vs: crate::VarBuilder,
|
|
) -> Result<Conv2d> {
|
|
let init_ws = crate::init::DEFAULT_KAIMING_NORMAL;
|
|
let ws = vs.get_or_init(
|
|
(out_channels, in_channels, kernel_size, kernel_size),
|
|
"weight",
|
|
init_ws,
|
|
)?;
|
|
let bound = 1. / (in_channels as f64).sqrt();
|
|
let init_bs = crate::Init::Uniform {
|
|
lo: -bound,
|
|
up: bound,
|
|
};
|
|
let bs = vs.get_or_init(out_channels, "bias", init_bs)?;
|
|
Ok(Conv2d::new(ws, Some(bs), cfg))
|
|
}
|