Files
candle/candle-core/src/cpu_backend.rs
2023-07-04 13:50:41 +01:00

743 lines
27 KiB
Rust

use crate::op::{BinaryOp, UnaryOp};
use crate::{DType, Error, Layout, Result, Shape, WithDType};
use gemm::{gemm, Parallelism};
use half::{bf16, f16};
// TODO: Maybe we should not implement [Clone] here and instead have an explicit allocator +
// intercept the oom errors to avoid panicking and provide a proper error.
#[derive(Debug, Clone)]
pub enum CpuStorage {
U8(Vec<u8>),
U32(Vec<u32>),
BF16(Vec<bf16>),
F16(Vec<f16>),
F32(Vec<f32>),
F64(Vec<f64>),
}
trait Map1 {
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>>;
fn map(&self, vs: &CpuStorage, layout: &Layout) -> Result<CpuStorage> {
match vs {
CpuStorage::U8(vs) => Ok(CpuStorage::U8(self.f(vs, layout)?)),
CpuStorage::U32(vs) => Ok(CpuStorage::U32(self.f(vs, layout)?)),
CpuStorage::BF16(vs) => Ok(CpuStorage::BF16(self.f(vs, layout)?)),
CpuStorage::F16(vs) => Ok(CpuStorage::F16(self.f(vs, layout)?)),
CpuStorage::F32(vs) => Ok(CpuStorage::F32(self.f(vs, layout)?)),
CpuStorage::F64(vs) => Ok(CpuStorage::F64(self.f(vs, layout)?)),
}
}
}
type C = CpuStorage;
trait Map2 {
const OP: &'static str;
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<T>>;
fn map(
&self,
v1: &CpuStorage,
l1: &Layout,
v2: &CpuStorage,
l2: &Layout,
) -> Result<CpuStorage> {
match (v1, v2) {
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::U32(v1), C::U32(v2)) => Ok(C::U32(self.f(v1, l1, v2, l2)?)),
(C::BF16(v1), C::BF16(v2)) => Ok(C::BF16(self.f(v1, l1, v2, l2)?)),
(C::F16(v1), C::F16(v2)) => Ok(C::F16(self.f(v1, l1, v2, l2)?)),
(C::F32(v1), C::F32(v2)) => Ok(C::F32(self.f(v1, l1, v2, l2)?)),
(C::F64(v1), C::F64(v2)) => Ok(C::F64(self.f(v1, l1, v2, l2)?)),
_ => Err(Error::DTypeMismatchBinaryOp {
lhs: v1.dtype(),
rhs: v2.dtype(),
op: Self::OP,
}),
}
}
}
struct WCond<'a>(&'a [u32], &'a Layout);
impl<'a> Map2 for WCond<'a> {
const OP: &'static str = "where";
fn f<T: WithDType>(&self, t: &[T], t_l: &Layout, f: &[T], f_l: &Layout) -> Result<Vec<T>> {
let vs = match (
self.1.contiguous_offsets(),
t_l.contiguous_offsets(),
f_l.contiguous_offsets(),
) {
(Some((o1, o2)), Some((o_t1, o_t2)), Some((o_f1, o_f2))) => {
let pred = &self.0[o1..o2];
let t = &t[o_t1..o_t2];
let f = &f[o_f1..o_f2];
pred.iter()
.zip(t.iter().zip(f.iter()))
.map(|(&p, (&t, &f))| if p > 0 { t } else { f })
.collect::<Vec<_>>()
}
_ => self
.1
.strided_index()
.zip(t_l.strided_index().zip(f_l.strided_index()))
.map(|(i_p, (i_t, i_f))| if self.0[i_p] > 0 { t[i_t] } else { f[i_f] })
.collect::<Vec<_>>(),
};
Ok(vs)
}
}
struct Sum<'a> {
dst_shape: &'a Shape,
sum_dims_and_stride: Vec<(usize, usize)>,
}
impl<'a> Map1 for Sum<'a> {
fn f<T: WithDType>(&self, src: &[T], src_layout: &Layout) -> Result<Vec<T>> {
let mut dst = vec![T::zero(); self.dst_shape.elem_count()];
for (unstr_index, src_index) in src_layout.strided_index().enumerate() {
let mut dst_index = unstr_index;
// Set the sum_dims indexes to 0.
for &(dim, stride) in self.sum_dims_and_stride.iter() {
// The compiler is able to optimize the following in a single divmod op.
let (pre, post) = (dst_index / stride, dst_index % stride);
dst_index = (pre / dim) * stride + post;
}
dst[dst_index] += src[src_index];
}
Ok(dst)
}
}
fn unary_map<T: Copy, U: Copy, F: FnMut(T) -> U>(vs: &[T], layout: &Layout, mut f: F) -> Vec<U> {
match layout.contiguous_offsets() {
Some((o1, o2)) => vs[o1..o2].iter().map(|&v| f(v)).collect(),
None => layout.strided_index().map(|i| f(vs[i])).collect(),
}
}
// This function maps over two strided index sequences.
fn binary_map<T: Copy, F: FnMut(T, T) -> T>(
lhs_l: &Layout,
rhs_l: &Layout,
lhs: &[T],
rhs: &[T],
mut f: F,
) -> Vec<T> {
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => lhs[o_l1..o_l2]
.iter()
.zip(rhs[o_r1..o_r2].iter())
.map(|(&l, &r)| f(l, r))
.collect(),
_ => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
}
}
struct Affine(f64, f64);
impl Map1 for Affine {
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>> {
let mul = T::from_f64(self.0);
let add = T::from_f64(self.1);
Ok(unary_map(vs, layout, |v| v * mul + add))
}
}
struct Embedding<'a> {
vocab_size: usize,
hidden_size: usize,
ids: &'a [u32],
ids_l: &'a Layout,
}
impl<'a> Map1 for Embedding<'a> {
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>> {
// TODO: We assume that vs is contiguous here.
let vs = &vs[layout.start_offset()..];
let mut values = Vec::with_capacity(self.ids_l.shape().elem_count() * self.hidden_size);
// TODO: Optimize for the case where ids are contiguous.
for index in self.ids_l.strided_index() {
let index = self.ids[index].try_into()?;
if index >= self.vocab_size {
return Err(Error::InvalidIndex {
index,
vocab_size: self.vocab_size,
op: "take",
});
} else {
let hidden_size = self.hidden_size;
values.extend(&vs[hidden_size * index..hidden_size * (index + 1)]);
}
}
Ok(values)
}
}
fn copy_strided_src_<T: Copy + std::fmt::Display>(
src: &[T],
dst: &mut [T],
dst_offset: usize,
src_l: &Layout,
) {
match src_l.contiguous_offsets() {
Some((o_dst1, o_dst2)) => {
let elem_to_copy = (dst.len() - dst_offset).min(o_dst2 - o_dst1);
dst[dst_offset..dst_offset + elem_to_copy].copy_from_slice(&src[o_dst1..o_dst2])
}
None => {
for (dst_index, src_index) in src_l.strided_index().enumerate() {
let dst_index = dst_index + dst_offset;
if dst_index >= dst.len() {
break;
}
dst[dst_index] = src[src_index]
}
}
}
}
struct Conv1D<'a>(&'a crate::conv::ParamsConv1D);
impl<'a> Map2 for Conv1D<'a> {
const OP: &'static str = "conv1d";
fn f<T: 'static + num_traits::NumAssign + Copy>(
&self,
inp: &[T],
inp_l: &Layout,
k: &[T],
k_l: &Layout,
) -> Result<Vec<T>> {
// TODO: Optimize this (proper algorithm, simd, multithread, remove bound checks, etc).
let p = self.0;
let inp = &inp[inp_l.start_offset()..];
let k = &k[k_l.start_offset()..];
let inp_stride = inp_l.stride();
let (inp_stride0, inp_stride) = if inp_stride.len() == 3 {
(inp_stride[0], &inp_stride[1..])
} else {
(0, inp_stride) // This value never gets used anyway
};
let k_stride = k_l.stride();
let k_over_2 = p.k_size / 2;
let l_out = p.l_out();
let dst_elems = p.c_out * l_out * p.b_size.unwrap_or(1);
let mut dst = vec![T::zero(); dst_elems];
// The output shape is [b_size, c_out, l_out]
for b_idx in 0..p.b_size.unwrap_or(1) {
let inp_idx = b_idx * inp_stride0;
let dst_idx = b_idx * p.c_out * l_out;
for dst_c_idx in 0..p.c_out {
let dst_idx = dst_idx + dst_c_idx * l_out;
for dst_l in 0..l_out {
let dst_idx = dst_idx + dst_l;
let mut d = T::zero();
for offset in 0..p.k_size {
// inp[bidx, src_c_idx, dst_l + offset - k//2] * k[dst_c_idx, src_c_idx, offset]
if k_over_2 <= dst_l + offset && dst_l + offset < k_over_2 + p.l_in {
let src_l = dst_l + offset - k_over_2;
for src_c_idx in 0..p.c_in {
let inp_idx =
inp_idx + src_c_idx * inp_stride[0] + src_l * inp_stride[1];
let k_idx = dst_c_idx * k_stride[0]
+ src_c_idx * k_stride[1]
+ offset * k_stride[2];
d += inp[inp_idx] * k[k_idx]
}
}
}
dst[dst_idx] = d
}
}
}
Ok(dst)
}
}
struct MatMul((usize, usize, usize, usize));
impl Map2 for MatMul {
const OP: &'static str = "mat_mul";
fn f<T: 'static + num_traits::Num + Copy>(
&self,
lhs: &[T],
lhs_l: &Layout,
rhs: &[T],
rhs_l: &Layout,
) -> Result<Vec<T>> {
let (b, m, n, k) = self.0;
let lhs = &lhs[lhs_l.start_offset()..];
let rhs = &rhs[rhs_l.start_offset()..];
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let rank = lhs_stride.len();
let lhs_cs = lhs_stride[rank - 1];
let lhs_rs = lhs_stride[rank - 2];
let rhs_cs = rhs_stride[rank - 1];
let rhs_rs = rhs_stride[rank - 2];
let a_skip: usize = match lhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[stride] => stride,
[] => m * k,
_ => Err(Error::UnexpectedStriding {
lhs_stride: lhs_stride.to_vec(),
rhs_stride: rhs_stride.to_vec(),
})?,
};
let b_skip: usize = match rhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[stride] => stride,
[] => n * k,
_ => Err(Error::UnexpectedStriding {
lhs_stride: lhs_stride.to_vec(),
rhs_stride: rhs_stride.to_vec(),
})?,
};
let c_skip: usize = m * n;
let dst_shape: Shape = (m, n).into();
let dst_strides = dst_shape.stride_contiguous();
let dst_rs = dst_strides[0];
let dst_cs = dst_strides[1];
let mut dst = vec![T::zero(); b * m * n];
let num_threads = crate::utils::get_num_threads();
let parallelism = if num_threads > 1 {
Parallelism::Rayon(num_threads)
} else {
Parallelism::None
};
for step in 0..b {
let lhs_p = &lhs[step * a_skip..];
let rhs_p = &rhs[step * b_skip..];
let dst_p = &mut dst[step * c_skip..];
unsafe {
gemm(
/* m: usize = */ m,
/* n: usize = */ n,
/* k: usize = */ k,
/* dst: *mut T = */ dst_p.as_mut_ptr(),
/* dst_cs: isize = */ dst_cs as isize,
/* dst_rs: isize = */ dst_rs as isize,
/* read_dst: bool = */ false,
/* lhs: *const T = */ lhs_p.as_ptr(),
/* lhs_cs: isize = */ lhs_cs as isize,
/* lhs_rs: isize = */ lhs_rs as isize,
/* rhs: *const T = */ rhs_p.as_ptr(),
/* rhs_cs: isize = */ rhs_cs as isize,
/* rhs_rs: isize = */ rhs_rs as isize,
/* alpha: T = */ T::zero(),
/* beta: T = */ T::one(),
/* conj_dst: bool = */ false,
/* conj_lhs: bool = */ false,
/* conj_rhs: bool = */ false,
parallelism,
)
}
}
Ok(dst)
}
}
fn divide_by_sum_over_dim<T: WithDType>(s: &mut [T], shape: &Shape, dim: usize) -> Result<()> {
// [self] stores data in a contiguous way starting at offset 0.
let dims = shape.dims();
let elem_per_slice = dims[dim];
let prod_pre_dim = dims[..dim].iter().product();
let prod_post_dim = dims[dim + 1..].iter().product();
for pre_idx in 0..prod_pre_dim {
for post_idx in 0..prod_post_dim {
let mut sum = 0f64;
let mut idx = pre_idx * prod_post_dim * elem_per_slice + post_idx;
for _ in 0..elem_per_slice {
sum += s[idx].to_f64();
idx += prod_post_dim
}
let sum = T::from_f64(sum);
let mut idx = pre_idx * prod_post_dim * elem_per_slice + post_idx;
for _ in 0..elem_per_slice {
s[idx] /= sum;
idx += prod_post_dim
}
}
}
Ok(())
}
impl CpuStorage {
pub fn dtype(&self) -> DType {
match self {
Self::U8(_) => DType::U8,
Self::U32(_) => DType::U32,
Self::BF16(_) => DType::BF16,
Self::F16(_) => DType::F16,
Self::F32(_) => DType::F32,
Self::F64(_) => DType::F64,
}
}
pub fn as_slice<D: WithDType>(&self) -> Result<&[D]> {
D::cpu_storage_as_slice(self)
}
pub(crate) fn to_dtype(&self, layout: &Layout, dtype: DType) -> Result<Self> {
// TODO: find a way around the quadratic number of cases below.
match (self, dtype) {
(Self::U8(storage), DType::BF16) => {
let data = unary_map(storage, layout, |v| bf16::from_f32(v as f32));
Ok(Self::BF16(data))
}
(Self::U32(storage), DType::BF16) => {
let data = unary_map(storage, layout, |v| bf16::from_f32(v as f32));
Ok(Self::BF16(data))
}
(Self::BF16(storage), DType::BF16) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::BF16(data))
}
(Self::F16(storage), DType::BF16) => {
let data = unary_map(storage, layout, |v| bf16::from_f32(v.to_f32()));
Ok(Self::BF16(data))
}
(Self::F32(storage), DType::BF16) => {
let data = unary_map(storage, layout, bf16::from_f32);
Ok(Self::BF16(data))
}
(Self::F64(storage), DType::BF16) => {
let data = unary_map(storage, layout, bf16::from_f64);
Ok(Self::BF16(data))
}
(Self::U8(storage), DType::F16) => {
let data = unary_map(storage, layout, |v| f16::from_f32(v as f32));
Ok(Self::F16(data))
}
(Self::U32(storage), DType::F16) => {
let data = unary_map(storage, layout, |v| f16::from_f32(v as f32));
Ok(Self::F16(data))
}
(Self::BF16(storage), DType::F16) => {
let data = unary_map(storage, layout, |v| f16::from_f32(v.to_f32()));
Ok(Self::F16(data))
}
(Self::F16(storage), DType::F16) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::F16(data))
}
(Self::F32(storage), DType::F16) => {
let data = unary_map(storage, layout, f16::from_f32);
Ok(Self::F16(data))
}
(Self::F64(storage), DType::F16) => {
let data = unary_map(storage, layout, f16::from_f64);
Ok(Self::F16(data))
}
(Self::U8(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v as f32);
Ok(Self::F32(data))
}
(Self::U32(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v as f32);
Ok(Self::F32(data))
}
(Self::BF16(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v.to_f32());
Ok(Self::F32(data))
}
(Self::F16(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v.to_f32());
Ok(Self::F32(data))
}
(Self::F32(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::F32(data))
}
(Self::F64(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v as f32);
Ok(Self::F32(data))
}
(Self::U8(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::U8(data))
}
(Self::BF16(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v.to_f32() as u8);
Ok(Self::U8(data))
}
(Self::F16(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v.to_f32() as u8);
Ok(Self::U8(data))
}
(Self::F32(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v as u8);
Ok(Self::U8(data))
}
(Self::F64(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v as u8);
Ok(Self::U8(data))
}
(Self::U8(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v as u32);
Ok(Self::U32(data))
}
(Self::U32(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v as u8);
Ok(Self::U8(data))
}
(Self::U32(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::U32(data))
}
(Self::BF16(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v.to_f32() as u32);
Ok(Self::U32(data))
}
(Self::F16(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v.to_f32() as u32);
Ok(Self::U32(data))
}
(Self::F32(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v as u32);
Ok(Self::U32(data))
}
(Self::F64(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v as u32);
Ok(Self::U32(data))
}
(Self::U8(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v as f64);
Ok(Self::F64(data))
}
(Self::U32(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v as f64);
Ok(Self::F64(data))
}
(Self::BF16(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v.to_f64());
Ok(Self::F64(data))
}
(Self::F16(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v.to_f64());
Ok(Self::F64(data))
}
(Self::F32(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v as f64);
Ok(Self::F64(data))
}
(Self::F64(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::F64(data))
}
}
}
pub(crate) fn sum(&self, layout: &Layout, sum_dims: &[usize]) -> Result<Self> {
let src_dims = layout.dims();
let mut dst_dims = src_dims.to_vec();
for &sum_dim in sum_dims.iter() {
dst_dims[sum_dim] = 1;
}
let dst_shape = Shape::from(dst_dims);
let mut sum_dims = sum_dims.to_vec();
// Sort the sum_dims as they have to be processed from left to right when converting the
// indexes.
sum_dims.sort();
let sum_dims_and_stride: Vec<_> = sum_dims
.iter()
.map(|&d| (src_dims[d], src_dims[d + 1..].iter().product::<usize>()))
.collect();
Sum {
dst_shape: &dst_shape,
sum_dims_and_stride,
}
.map(self, layout)
}
pub(crate) fn divide_by_sum_over_dim(&mut self, shape: &Shape, dim: usize) -> Result<()> {
// [self] stores data in a contiguous way starting at offset 0.
match self {
Self::BF16(s) => divide_by_sum_over_dim(s, shape, dim),
Self::F16(s) => divide_by_sum_over_dim(s, shape, dim),
Self::F32(s) => divide_by_sum_over_dim(s, shape, dim),
Self::F64(s) => divide_by_sum_over_dim(s, shape, dim),
Self::U8(_) | Self::U32(_) => Ok(()),
}
}
pub(crate) fn affine(&self, layout: &Layout, mul: f64, add: f64) -> Result<Self> {
Affine(mul, add).map(self, layout)
}
pub(crate) fn unary_impl<B: UnaryOp>(&self, layout: &Layout) -> Result<Self> {
match self {
Self::BF16(storage) => {
let data = unary_map(storage, layout, B::bf16);
Ok(Self::BF16(data))
}
Self::F16(storage) => {
let data = unary_map(storage, layout, B::f16);
Ok(Self::F16(data))
}
Self::F32(storage) => {
let data = unary_map(storage, layout, B::f32);
Ok(Self::F32(data))
}
Self::F64(storage) => {
let data = unary_map(storage, layout, B::f64);
Ok(Self::F64(data))
}
Self::U8(storage) => {
let data = unary_map(storage, layout, B::u8);
Ok(Self::U8(data))
}
Self::U32(storage) => {
let data = unary_map(storage, layout, B::u32);
Ok(Self::U32(data))
}
}
}
pub(crate) fn binary_impl<B: BinaryOp>(
&self,
rhs: &Self,
lhs_l: &Layout,
rhs_l: &Layout,
) -> Result<Self> {
match (self, rhs) {
(Self::BF16(lhs), Self::BF16(rhs)) => {
let data = binary_map(lhs_l, rhs_l, lhs, rhs, B::bf16);
Ok(Self::BF16(data))
}
(Self::F16(lhs), Self::F16(rhs)) => {
let data = binary_map(lhs_l, rhs_l, lhs, rhs, B::f16);
Ok(Self::F16(data))
}
(Self::F32(lhs), Self::F32(rhs)) => {
let data = binary_map(lhs_l, rhs_l, lhs, rhs, B::f32);
Ok(Self::F32(data))
}
(Self::F64(lhs), Self::F64(rhs)) => {
let data = binary_map(lhs_l, rhs_l, lhs, rhs, B::f64);
Ok(Self::F64(data))
}
(Self::U32(lhs), Self::U32(rhs)) => {
let data = binary_map(lhs_l, rhs_l, lhs, rhs, B::u32);
Ok(Self::U32(data))
}
(Self::U8(lhs), Self::U8(rhs)) => {
let data = binary_map(lhs_l, rhs_l, lhs, rhs, B::u8);
Ok(Self::U8(data))
}
_ => {
// This should be covered by the dtype check above.
Err(Error::DTypeMismatchBinaryOp {
lhs: self.dtype(),
rhs: rhs.dtype(),
op: B::NAME,
})
}
}
}
pub(crate) fn copy_strided_src(
&self,
dst: &mut Self,
dst_offset: usize,
src_l: &Layout,
) -> Result<()> {
match (self, dst) {
(Self::U8(src), Self::U8(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::U32(src), Self::U32(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::BF16(src), Self::BF16(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::F16(src), Self::F16(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::F32(src), Self::F32(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::F64(src), Self::F64(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(_, dst) => {
// This should be covered by the dtype check above.
return Err(Error::DTypeMismatchBinaryOp {
lhs: self.dtype(),
rhs: dst.dtype(),
op: "copy_strided",
});
}
}
Ok(())
}
pub(crate) fn where_cond(
&self,
layout: &Layout,
t: &Self,
t_l: &Layout,
f: &Self,
f_l: &Layout,
) -> Result<Self> {
// TODO: Support types that could be casted to a boolean.
let pred = self.as_slice::<u32>()?;
WCond(pred, layout).map(t, t_l, f, f_l)
}
pub(crate) fn conv1d(
&self,
l: &Layout,
kernel: &Self,
kernel_l: &Layout,
params: &crate::conv::ParamsConv1D,
) -> Result<Self> {
Conv1D(params).map(self, l, kernel, kernel_l)
}
pub(crate) fn embedding(&self, ids_l: &Layout, rhs: &Self, rhs_l: &Layout) -> Result<Self> {
let ids = self.as_slice::<u32>()?;
let (vocab_size, hidden_size) = rhs_l.shape().r2()?;
Embedding {
vocab_size,
hidden_size,
ids,
ids_l,
}
.map(rhs, rhs_l)
}
pub(crate) fn matmul(
&self,
rhs: &Self,
bmnk: (usize, usize, usize, usize),
lhs_l: &Layout,
rhs_l: &Layout,
) -> Result<Self> {
MatMul(bmnk).map(self, lhs_l, rhs, rhs_l)
}
pub(crate) fn ones_impl(shape: &Shape, dtype: DType) -> Self {
let elem_count = shape.elem_count();
match dtype {
DType::U8 => Self::U8(vec![1u8; elem_count]),
DType::U32 => Self::U32(vec![1u32; elem_count]),
DType::BF16 => Self::BF16(vec![bf16::ONE; elem_count]),
DType::F16 => Self::F16(vec![f16::ONE; elem_count]),
DType::F32 => Self::F32(vec![1f32; elem_count]),
DType::F64 => Self::F64(vec![1f64; elem_count]),
}
}
pub(crate) fn zeros_impl(shape: &Shape, dtype: DType) -> Self {
let elem_count = shape.elem_count();
match dtype {
DType::U8 => Self::U8(vec![0u8; elem_count]),
DType::U32 => Self::U32(vec![0u32; elem_count]),
DType::BF16 => Self::BF16(vec![bf16::ZERO; elem_count]),
DType::F16 => Self::F16(vec![f16::ZERO; elem_count]),
DType::F32 => Self::F32(vec![0f32; elem_count]),
DType::F64 => Self::F64(vec![0f64; elem_count]),
}
}
}