mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
252 lines
7.9 KiB
Rust
252 lines
7.9 KiB
Rust
// An implementation of LLaMA https://github.com/facebookresearch/llama
|
|
//
|
|
// This is based on nanoGPT in a similar way to:
|
|
// https://github.com/Lightning-AI/lit-llama/blob/main/lit_llama/model.py
|
|
//
|
|
// The tokenizer config can be retrieved from:
|
|
// https://huggingface.co/hf-internal-testing/llama-tokenizer/raw/main/tokenizer.json
|
|
|
|
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
use anyhow::{bail, Error as E, Result};
|
|
use clap::{Parser, ValueEnum};
|
|
|
|
use candle::{DType, Device, Tensor};
|
|
use candle_transformers::generation::LogitsProcessor;
|
|
use candle_transformers::models::llama::LlamaEosToks;
|
|
use cudarc::driver::safe::CudaDevice;
|
|
use cudarc::nccl::safe::{Comm, Id};
|
|
use hf_hub::{api::sync::Api, Repo, RepoType};
|
|
use std::io::Write;
|
|
use std::rc::Rc;
|
|
|
|
|
|
mod model;
|
|
use model::{Config, Llama};
|
|
|
|
const MAX_SEQ_LEN: usize = 4096;
|
|
const DEFAULT_PROMPT: &str = "My favorite theorem is ";
|
|
|
|
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
|
|
enum Which {
|
|
V2_7b,
|
|
V2_70b,
|
|
V3_8b,
|
|
V3_70b,
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
#[arg(long)]
|
|
num_shards: usize,
|
|
|
|
#[arg(long)]
|
|
rank: Option<usize>,
|
|
|
|
/// The temperature used to generate samples.
|
|
#[arg(long, default_value_t = 0.8)]
|
|
temperature: f64,
|
|
|
|
/// Nucleus sampling probability cutoff.
|
|
#[arg(long)]
|
|
top_p: Option<f64>,
|
|
|
|
/// The seed to use when generating random samples.
|
|
#[arg(long, default_value_t = 299792458)]
|
|
seed: u64,
|
|
|
|
/// The length of the sample to generate (in tokens).
|
|
#[arg(long, default_value_t = 100)]
|
|
sample_len: usize,
|
|
|
|
/// Disable the key-value cache.
|
|
#[arg(long)]
|
|
no_kv_cache: bool,
|
|
|
|
/// The initial prompt.
|
|
#[arg(long)]
|
|
prompt: Option<String>,
|
|
|
|
#[arg(long)]
|
|
model_id: Option<String>,
|
|
|
|
#[arg(long)]
|
|
revision: Option<String>,
|
|
|
|
#[arg(long)]
|
|
dtype: Option<String>,
|
|
|
|
#[arg(long, default_value = "v3-8b")]
|
|
which: Which,
|
|
|
|
#[arg(long, default_value = "nccl_id.txt")]
|
|
comm_file: String,
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
use tokenizers::Tokenizer;
|
|
|
|
let args = Args::parse();
|
|
|
|
let dtype = match args.dtype.as_deref() {
|
|
Some("f16") => DType::F16,
|
|
Some("bf16") => DType::BF16,
|
|
Some("f32") => DType::F32,
|
|
Some(dtype) => bail!("Unsupported dtype {dtype}"),
|
|
None => match args.which {
|
|
Which::V2_7b | Which::V2_70b => DType::F16,
|
|
Which::V3_8b | Which::V3_70b => DType::BF16,
|
|
},
|
|
};
|
|
|
|
let comm_file = std::path::PathBuf::from(&args.comm_file);
|
|
if comm_file.exists() {
|
|
bail!("comm file {comm_file:?} already exists, please remove it first")
|
|
}
|
|
|
|
let api = Api::new()?;
|
|
let model_id = match args.model_id {
|
|
Some(model) => model,
|
|
None => match args.which {
|
|
Which::V2_7b => "meta-llama/Llama-2-7b-hf".to_string(),
|
|
Which::V2_70b => "meta-llama/Llama-2-70b-hf".to_string(),
|
|
Which::V3_8b => "meta-llama/Meta-Llama-3-8B".to_string(),
|
|
Which::V3_70b => "meta-llama/Meta-Llama-3-70B".to_string(),
|
|
},
|
|
};
|
|
println!("loading the model weights from {model_id}");
|
|
let revision = args.revision.unwrap_or("main".to_string());
|
|
let api = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
|
|
let config_filename = api.get("config.json")?;
|
|
let config: Config = serde_json::from_slice(&std::fs::read(config_filename)?)?;
|
|
let tokenizer_filename = api.get("tokenizer.json")?;
|
|
let filenames = candle_examples::hub_load_safetensors(&api, "model.safetensors.index.json")?;
|
|
|
|
let rank = match args.rank {
|
|
None => {
|
|
println!("creating {} child processes", args.num_shards);
|
|
let children: Vec<_> = (0..args.num_shards)
|
|
.map(|rank| {
|
|
let mut args: std::collections::VecDeque<_> = std::env::args().collect();
|
|
args.push_back("--rank".to_string());
|
|
args.push_back(format!("{rank}"));
|
|
let name = args.pop_front().unwrap();
|
|
std::process::Command::new(name).args(args).spawn().unwrap()
|
|
})
|
|
.collect();
|
|
for mut child in children {
|
|
child.wait()?;
|
|
}
|
|
return Ok(());
|
|
}
|
|
Some(rank) => rank,
|
|
};
|
|
|
|
let num_shards = args.num_shards;
|
|
// Primitive IPC
|
|
let id = if rank == 0 {
|
|
let id = Id::new().unwrap();
|
|
let tmp_file = comm_file.with_extension(".comm.tgz");
|
|
std::fs::File::create(&tmp_file)?
|
|
.write_all(&id.internal().iter().map(|&i| i as u8).collect::<Vec<_>>())?;
|
|
std::fs::rename(&tmp_file, &comm_file)?;
|
|
id
|
|
} else {
|
|
while !comm_file.exists() {
|
|
std::thread::sleep(std::time::Duration::from_secs(1));
|
|
}
|
|
let data = std::fs::read(&comm_file)?;
|
|
let internal: [i8; 128] = data
|
|
.into_iter()
|
|
.map(|i| i as i8)
|
|
.collect::<Vec<_>>()
|
|
.try_into()
|
|
.unwrap();
|
|
let id: Id = Id::uninit(internal);
|
|
id
|
|
};
|
|
let device = CudaDevice::new(rank)?;
|
|
let comm = match Comm::from_rank(device, rank, num_shards, id) {
|
|
Ok(comm) => Rc::new(comm),
|
|
Err(err) => anyhow::bail!("nccl error {:?}", err.0),
|
|
};
|
|
if rank == 0 {
|
|
std::fs::remove_file(comm_file)?;
|
|
}
|
|
println!("Rank {rank:?} spawned");
|
|
|
|
let device = Device::new_cuda(rank)?;
|
|
let cache = model::Cache::new(dtype, &config, &device)?;
|
|
|
|
println!("building the model");
|
|
let vb = unsafe {
|
|
candle_nn::var_builder::ShardedSafeTensors::var_builder(&filenames, dtype, &device)?
|
|
};
|
|
let llama = Llama::load(vb, &cache, &config, comm)?;
|
|
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
|
|
|
let prompt = args.prompt.as_ref().map_or(DEFAULT_PROMPT, |p| p.as_str());
|
|
let mut tokens = tokenizer
|
|
.encode(prompt, true)
|
|
.map_err(E::msg)?
|
|
.get_ids()
|
|
.to_vec();
|
|
let mut tokenizer = candle_examples::token_output_stream::TokenOutputStream::new(tokenizer);
|
|
|
|
println!("starting the inference loop");
|
|
let temperature = if args.temperature <= 0. {
|
|
None
|
|
} else {
|
|
Some(args.temperature)
|
|
};
|
|
let mut logits_processor = LogitsProcessor::new(args.seed, temperature, args.top_p);
|
|
let mut new_tokens = vec![];
|
|
let mut start_gen = std::time::Instant::now();
|
|
let mut index_pos = 0;
|
|
for index in 0..args.sample_len {
|
|
// Only start timing at the second token as processing the first token waits for all the
|
|
// weights to be loaded in an async way.
|
|
if index == 1 {
|
|
start_gen = std::time::Instant::now()
|
|
};
|
|
let context_size = if index > 0 { 1 } else { tokens.len() };
|
|
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
|
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
|
|
let logits = llama.forward(&input, index_pos)?;
|
|
let logits = logits.squeeze(0)?;
|
|
index_pos += ctxt.len();
|
|
|
|
let next_token = logits_processor.sample(&logits)?;
|
|
tokens.push(next_token);
|
|
new_tokens.push(next_token);
|
|
match config.eos_token_id {
|
|
Some(LlamaEosToks::Single(eos_tok_id)) if next_token == eos_tok_id => {
|
|
break;
|
|
}
|
|
Some(LlamaEosToks::Multiple(ref eos_ids)) if eos_ids.contains(&next_token) => {
|
|
break;
|
|
}
|
|
_ => (),
|
|
}
|
|
|
|
if rank == 0 {
|
|
if let Some(t) = tokenizer.next_token(next_token)? {
|
|
print!("{t}");
|
|
std::io::stdout().flush()?;
|
|
}
|
|
}
|
|
}
|
|
println!();
|
|
if rank == 0 {
|
|
let dt = start_gen.elapsed();
|
|
println!(
|
|
"\n\n{} tokens generated ({} token/s)\n",
|
|
args.sample_len,
|
|
(args.sample_len - 1) as f64 / dt.as_secs_f64(),
|
|
);
|
|
}
|
|
Ok(())
|
|
}
|