mirror of
https://github.com/huggingface/candle.git
synced 2025-06-21 04:10:46 +00:00
294 lines
10 KiB
Rust
294 lines
10 KiB
Rust
use crate::quantized_nn::{layer_norm, linear, linear_no_bias, Embedding, Linear};
|
|
pub use crate::quantized_var_builder::VarBuilder;
|
|
use candle::{DType, Device, Module, Result, Tensor, D};
|
|
use candle_nn::{Activation, LayerNorm};
|
|
use std::sync::Arc;
|
|
|
|
pub use crate::models::stable_lm::Config;
|
|
use crate::models::stable_lm::RotaryEmbedding;
|
|
|
|
#[derive(Debug, Clone)]
|
|
#[allow(clippy::upper_case_acronyms)]
|
|
struct MLP {
|
|
gate_proj: Linear,
|
|
up_proj: Linear,
|
|
down_proj: Linear,
|
|
act_fn: Activation,
|
|
span: tracing::Span,
|
|
}
|
|
|
|
impl MLP {
|
|
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let hidden_sz = cfg.hidden_size;
|
|
let intermediate_sz = cfg.intermediate_size;
|
|
let gate_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?;
|
|
let up_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("up_proj"))?;
|
|
let down_proj = linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?;
|
|
Ok(Self {
|
|
gate_proj,
|
|
up_proj,
|
|
down_proj,
|
|
act_fn: cfg.hidden_act,
|
|
span: tracing::span!(tracing::Level::TRACE, "mlp"),
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Module for MLP {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let _enter = self.span.enter();
|
|
let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?;
|
|
let rhs = xs.apply(&self.up_proj)?;
|
|
(lhs * rhs)?.apply(&self.down_proj)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct Attention {
|
|
q_proj: Linear,
|
|
k_proj: Linear,
|
|
v_proj: Linear,
|
|
o_proj: Linear,
|
|
num_heads: usize,
|
|
num_kv_heads: usize,
|
|
num_kv_groups: usize,
|
|
head_dim: usize,
|
|
hidden_size: usize,
|
|
rotary_emb: Arc<RotaryEmbedding>,
|
|
kv_cache: Option<(Tensor, Tensor)>,
|
|
use_cache: bool,
|
|
rotary_ndims: usize,
|
|
span: tracing::Span,
|
|
}
|
|
|
|
impl Attention {
|
|
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let hidden_sz = cfg.hidden_size;
|
|
let head_dim = cfg.head_dim();
|
|
let num_heads = cfg.num_attention_heads;
|
|
let num_kv_heads = cfg.num_key_value_heads;
|
|
let linear_layer = if cfg.use_qkv_bias {
|
|
linear
|
|
} else {
|
|
linear_no_bias
|
|
};
|
|
let q_proj = linear_layer(hidden_sz, num_heads * head_dim, vb.pp("q_proj"))?;
|
|
let k_proj = linear_layer(hidden_sz, num_kv_heads * head_dim, vb.pp("k_proj"))?;
|
|
let v_proj = linear_layer(hidden_sz, num_kv_heads * head_dim, vb.pp("v_proj"))?;
|
|
let o_proj = linear_no_bias(num_heads * head_dim, hidden_sz, vb.pp("o_proj"))?;
|
|
Ok(Self {
|
|
q_proj,
|
|
k_proj,
|
|
v_proj,
|
|
o_proj,
|
|
num_heads,
|
|
num_kv_heads,
|
|
num_kv_groups: cfg.num_kv_groups(),
|
|
head_dim,
|
|
hidden_size: hidden_sz,
|
|
rotary_emb,
|
|
kv_cache: None,
|
|
use_cache: cfg.use_cache,
|
|
rotary_ndims: cfg.rotary_ndims(),
|
|
span: tracing::span!(tracing::Level::TRACE, "attn"),
|
|
})
|
|
}
|
|
|
|
fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
|
|
let n_rep = self.num_kv_groups;
|
|
if n_rep == 1 {
|
|
Ok(xs)
|
|
} else {
|
|
let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
|
|
xs.unsqueeze(2)?
|
|
.expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
|
|
.reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
|
|
}
|
|
}
|
|
|
|
fn forward(
|
|
&mut self,
|
|
xs: &Tensor,
|
|
attention_mask: Option<&Tensor>,
|
|
seqlen_offset: usize,
|
|
) -> Result<Tensor> {
|
|
let _enter = self.span.enter();
|
|
let (b_sz, q_len, _) = xs.dims3()?;
|
|
|
|
let query_states = self.q_proj.forward(xs)?;
|
|
let key_states = self.k_proj.forward(xs)?;
|
|
let value_states = self.v_proj.forward(xs)?;
|
|
|
|
let query_states = query_states
|
|
.reshape((b_sz, q_len, self.num_heads, self.head_dim))?
|
|
.transpose(1, 2)?;
|
|
let key_states = key_states
|
|
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
|
|
.transpose(1, 2)?;
|
|
let value_states = value_states
|
|
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
|
|
.transpose(1, 2)?;
|
|
|
|
let (rot_ndims, pass_ndims) = (self.rotary_ndims, self.head_dim - self.rotary_ndims);
|
|
let query_rot = query_states.narrow(D::Minus1, 0, rot_ndims)?;
|
|
let query_pass = query_states.narrow(D::Minus1, rot_ndims, pass_ndims)?;
|
|
let key_rot = key_states.narrow(D::Minus1, 0, rot_ndims)?;
|
|
let key_pass = key_states.narrow(D::Minus1, rot_ndims, pass_ndims)?;
|
|
let (query_rot, key_rot) =
|
|
self.rotary_emb
|
|
.apply_rotary_emb_qkv(&query_rot, &key_rot, seqlen_offset)?;
|
|
let query_states = Tensor::cat(&[query_rot, query_pass], D::Minus1)?.contiguous()?;
|
|
let key_states = Tensor::cat(&[key_rot, key_pass], D::Minus1)?.contiguous()?;
|
|
|
|
let (key_states, value_states) = match &self.kv_cache {
|
|
None => (key_states, value_states),
|
|
Some((prev_k, prev_v)) => {
|
|
let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
|
|
let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
|
|
(key_states, value_states)
|
|
}
|
|
};
|
|
if self.use_cache {
|
|
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
|
}
|
|
|
|
let key_states = self.repeat_kv(key_states)?.contiguous()?;
|
|
let value_states = self.repeat_kv(value_states)?.contiguous()?;
|
|
|
|
let attn_output = {
|
|
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
|
|
let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
|
|
|
|
let attn_weights = match attention_mask {
|
|
None => attn_weights,
|
|
Some(mask) => attn_weights.broadcast_add(mask)?,
|
|
};
|
|
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
|
|
attn_weights.matmul(&value_states)?
|
|
};
|
|
attn_output
|
|
.transpose(1, 2)?
|
|
.reshape((b_sz, q_len, self.hidden_size))?
|
|
.apply(&self.o_proj)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct DecoderLayer {
|
|
self_attn: Attention,
|
|
mlp: MLP,
|
|
input_layernorm: LayerNorm,
|
|
post_attention_layernorm: LayerNorm,
|
|
span: tracing::Span,
|
|
}
|
|
|
|
impl DecoderLayer {
|
|
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
|
|
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
|
|
let input_layernorm = layer_norm(cfg.hidden_size, cfg.norm_eps, vb.pp("input_layernorm"))?;
|
|
let post_attention_layernorm = layer_norm(
|
|
cfg.hidden_size,
|
|
cfg.norm_eps,
|
|
vb.pp("post_attention_layernorm"),
|
|
)?;
|
|
Ok(Self {
|
|
self_attn,
|
|
mlp,
|
|
input_layernorm,
|
|
post_attention_layernorm,
|
|
span: tracing::span!(tracing::Level::TRACE, "layer"),
|
|
})
|
|
}
|
|
|
|
fn forward(
|
|
&mut self,
|
|
xs: &Tensor,
|
|
attention_mask: Option<&Tensor>,
|
|
seqlen_offset: usize,
|
|
) -> Result<Tensor> {
|
|
let _enter = self.span.enter();
|
|
let residual = xs;
|
|
let xs = self.input_layernorm.forward(xs)?;
|
|
let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?;
|
|
let xs = (xs + residual)?;
|
|
let residual = &xs;
|
|
let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?;
|
|
residual + xs
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub struct Model {
|
|
embed_tokens: Embedding,
|
|
layers: Vec<DecoderLayer>,
|
|
norm: LayerNorm,
|
|
lm_head: Linear,
|
|
device: Device,
|
|
span: tracing::Span,
|
|
}
|
|
|
|
impl Model {
|
|
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let vb_m = vb.pp("model");
|
|
let embed_tokens =
|
|
Embedding::new(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
|
|
let rotary_emb = Arc::new(RotaryEmbedding::new(DType::F32, cfg, vb_m.device())?);
|
|
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
|
|
let vb_l = vb_m.pp("layers");
|
|
for layer_idx in 0..cfg.num_hidden_layers {
|
|
let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
|
|
layers.push(layer)
|
|
}
|
|
let norm = layer_norm(cfg.hidden_size, cfg.norm_eps, vb_m.pp("norm"))?;
|
|
let lm_head = linear_no_bias(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
|
|
Ok(Self {
|
|
embed_tokens,
|
|
layers,
|
|
norm,
|
|
lm_head,
|
|
device: vb.device().clone(),
|
|
span: tracing::span!(tracing::Level::TRACE, "model"),
|
|
})
|
|
}
|
|
|
|
fn prepare_decoder_attention_mask(
|
|
&self,
|
|
b_size: usize,
|
|
tgt_len: usize,
|
|
seqlen_offset: usize,
|
|
) -> Result<Tensor> {
|
|
// Sliding window mask?
|
|
let mask: Vec<_> = (0..tgt_len)
|
|
.flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
|
|
.collect();
|
|
let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
|
|
let mask = if seqlen_offset > 0 {
|
|
let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
|
|
Tensor::cat(&[&mask0, &mask], D::Minus1)?
|
|
} else {
|
|
mask
|
|
};
|
|
mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
|
|
.to_dtype(DType::F32)
|
|
}
|
|
|
|
pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
|
|
let _enter = self.span.enter();
|
|
let (b_size, seq_len) = input_ids.dims2()?;
|
|
let attention_mask = if seq_len <= 1 {
|
|
None
|
|
} else {
|
|
let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?;
|
|
Some(mask)
|
|
};
|
|
let mut xs = self.embed_tokens.forward(input_ids)?;
|
|
for layer in self.layers.iter_mut() {
|
|
xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?
|
|
}
|
|
xs.narrow(1, seq_len - 1, 1)?
|
|
.apply(&self.norm)?
|
|
.apply(&self.lm_head)
|
|
}
|
|
}
|