mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 10:26:33 +00:00
3983 lines
121 KiB
Rust
3983 lines
121 KiB
Rust
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
use candle::test_utils::to_vec2_round;
|
|
use candle::{DType, Device, NdArray, Result, Tensor};
|
|
use candle_onnx::eval::Value;
|
|
use candle_onnx::onnx::attribute_proto::AttributeType;
|
|
use candle_onnx::onnx::tensor_proto::DataType;
|
|
use candle_onnx::onnx::tensor_shape_proto::{dimension, Dimension};
|
|
use candle_onnx::onnx::{type_proto, TensorProto, TensorShapeProto, TypeProto};
|
|
use candle_onnx::onnx::{AttributeProto, GraphProto, ModelProto, NodeProto, ValueInfoProto};
|
|
use candle_onnx::simple_eval;
|
|
use std::collections::HashMap;
|
|
|
|
const INPUT_X: &str = "x";
|
|
const INPUT_Y: &str = "y";
|
|
const INPUT_A: &str = "a";
|
|
const OUTPUT_Z: &str = "z";
|
|
|
|
fn create_model_proto_with_graph(graph: Option<GraphProto>) -> ModelProto {
|
|
ModelProto {
|
|
metadata_props: vec![],
|
|
training_info: vec![],
|
|
functions: vec![],
|
|
ir_version: 0,
|
|
opset_import: vec![],
|
|
producer_name: "".to_string(),
|
|
producer_version: "".to_string(),
|
|
domain: "".to_string(),
|
|
model_version: 0,
|
|
doc_string: "".to_string(),
|
|
graph,
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_evaluation_fails_without_defined_graph() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(None);
|
|
let inputs: HashMap<String, Tensor> = HashMap::new();
|
|
match candle_onnx::simple_eval(&manual_graph, inputs) {
|
|
Err(err) => assert_eq!(err.to_string(), "no graph defined in proto"),
|
|
Ok(_) => panic!("Expected an error due to undefined graph"),
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
// "Add"
|
|
#[test]
|
|
fn test_add_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Add".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string(), INPUT_Y.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(&[2.], &Device::Cpu)?);
|
|
inputs.insert(INPUT_Y.to_string(), Tensor::new(&[2.], &Device::Cpu)?);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
let first = z.to_vec1::<f64>()?[0];
|
|
assert_eq!(first, 4.0f64);
|
|
Ok(())
|
|
}
|
|
|
|
// "Sub"
|
|
#[test]
|
|
fn test_sub_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Sub".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string(), INPUT_Y.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(&[2.], &Device::Cpu)?);
|
|
inputs.insert(INPUT_Y.to_string(), Tensor::new(&[2.], &Device::Cpu)?);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
let first = z.to_vec1::<f64>()?[0];
|
|
assert_eq!(first, 0.0f64);
|
|
Ok(())
|
|
}
|
|
|
|
// "Mul"
|
|
#[test]
|
|
fn test_mul_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Mul".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string(), INPUT_Y.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(&[2.], &Device::Cpu)?);
|
|
inputs.insert(INPUT_Y.to_string(), Tensor::new(&[2.], &Device::Cpu)?);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
let first = z.to_vec1::<f64>()?[0];
|
|
assert_eq!(first, 4.0f64);
|
|
Ok(())
|
|
}
|
|
|
|
// "Div"
|
|
#[test]
|
|
fn test_div_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Div".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string(), INPUT_Y.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(&[2.], &Device::Cpu)?);
|
|
inputs.insert(INPUT_Y.to_string(), Tensor::new(&[2.], &Device::Cpu)?);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
let first = z.to_vec1::<f64>()?[0];
|
|
assert_eq!(first, 1.0f64);
|
|
Ok(())
|
|
}
|
|
|
|
// "Exp"
|
|
#[test]
|
|
fn test_exp_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Exp".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let x = Tensor::from_vec(vec![-1.0f32, 0.0f32, 1.0f32, 2.0f32], &[2, 2], &Device::Cpu)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let results = z.to_vec2::<f32>()?;
|
|
|
|
assert_eq!(results[0][0], 0.36787944f32);
|
|
assert_eq!(results[0][1], 1.0f32);
|
|
assert_eq!(results[1], vec![std::f32::consts::E, 7.389056f32]);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Equal"
|
|
#[test]
|
|
fn test_equal_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Equal".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string(), INPUT_Y.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(&[2.], &Device::Cpu)?);
|
|
inputs.insert(INPUT_Y.to_string(), Tensor::new(&[2.], &Device::Cpu)?);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
let first = z.to_dtype(candle::DType::U8)?.to_vec1::<u8>()?.to_vec()[0];
|
|
assert_eq!(first, 1);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Not"
|
|
#[test]
|
|
fn test_not_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Not".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(&[0.], &Device::Cpu)?);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
let first = z.to_dtype(candle::DType::U8)?.to_vec1::<u8>()?.to_vec()[0];
|
|
assert_eq!(first, 1);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "MatMul"
|
|
#[test]
|
|
fn test_matmul_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "MatMul".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string(), INPUT_Y.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(
|
|
INPUT_X.to_string(),
|
|
Tensor::from_vec(
|
|
//
|
|
vec![1.0f32, 2.0f32, 3.0f32, 4.0f32],
|
|
&[2, 2],
|
|
&Device::Cpu,
|
|
)?,
|
|
);
|
|
inputs.insert(
|
|
INPUT_Y.to_string(),
|
|
Tensor::from_vec(
|
|
//
|
|
vec![5.0f32, 6.0f32, 7.0f32, 8.0f32],
|
|
&[2, 2],
|
|
&Device::Cpu,
|
|
)?,
|
|
);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
let results = z.to_vec2::<f32>()?;
|
|
assert_eq!(results, vec![vec![19.0, 22.0], vec![43.0, 50.0]]);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Reshape"
|
|
#[test]
|
|
fn test_reshape_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Reshape".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string(), INPUT_Y.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![
|
|
ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
ValueInfoProto {
|
|
name: INPUT_Y.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let x = Tensor::from_vec(
|
|
//
|
|
vec![1.0f32, 2.0f32, 3.0f32, 4.0f32],
|
|
&[2, 2],
|
|
&Device::Cpu,
|
|
)?;
|
|
let y = Tensor::from_vec(
|
|
//
|
|
vec![4i64],
|
|
&[1],
|
|
&Device::Cpu,
|
|
)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
inputs.insert(INPUT_Y.to_string(), y);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let results = z.to_vec1::<f32>()?;
|
|
|
|
assert_eq!(results, vec![1.0, 2.0, 3.0, 4.0]);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "LogSoftmax"
|
|
#[test]
|
|
fn test_logsoftmax_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "LogSoftmax".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![
|
|
ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
ValueInfoProto {
|
|
name: INPUT_Y.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let x = Tensor::from_vec(
|
|
//
|
|
vec![1.0f32, 2.0f32, 3.0f32, 4.0f32],
|
|
&[2, 2],
|
|
&Device::Cpu,
|
|
)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let results = z.to_vec2::<f32>()?;
|
|
|
|
assert_eq!(
|
|
results,
|
|
vec![vec![0.26894143, 0.7310586], vec![0.26894143, 0.7310586]]
|
|
);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Softmax"
|
|
#[test]
|
|
fn test_softmax_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Softmax".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![
|
|
ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
ValueInfoProto {
|
|
name: INPUT_Y.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let x = Tensor::from_vec(
|
|
//
|
|
vec![1.0f32, 2.0f32, 3.0f32, 4.0f32],
|
|
&[2, 2],
|
|
&Device::Cpu,
|
|
)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let results = z.to_vec2::<f32>()?;
|
|
|
|
assert_eq!(
|
|
results,
|
|
vec![vec![0.26894143, 0.7310586], vec![0.26894143, 0.7310586]]
|
|
);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Transpose"
|
|
#[test]
|
|
fn test_transpose_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Transpose".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![
|
|
ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
ValueInfoProto {
|
|
name: INPUT_Y.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let x = Tensor::from_vec(
|
|
//
|
|
vec![1.0f32, 2.0f32, 3.0f32, 4.0f32],
|
|
&[2, 2],
|
|
&Device::Cpu,
|
|
)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let results = z.to_vec2::<f32>()?;
|
|
|
|
assert_eq!(results, vec![vec![1.0, 3.0], vec![2.0, 4.0]]);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Dropout"
|
|
#[test]
|
|
fn test_dropout_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Dropout".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![
|
|
ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
ValueInfoProto {
|
|
name: INPUT_Y.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let x = Tensor::from_vec(
|
|
//
|
|
vec![1.0f32, 2.0f32, 3.0f32, 4.0f32],
|
|
&[2, 2],
|
|
&Device::Cpu,
|
|
)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let results = z.to_vec2::<f32>()?;
|
|
|
|
assert_eq!(results, vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Flatten"
|
|
#[test]
|
|
fn test_flatten_operation() -> Result<()> {
|
|
let mut att_axis = AttributeProto {
|
|
name: "axis".to_string(),
|
|
ref_attr_name: "axis".to_string(),
|
|
i: 0,
|
|
doc_string: "axis".to_string(),
|
|
r#type: 2,
|
|
f: 0.0,
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: vec![],
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Flatten".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![att_axis.clone()],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![
|
|
ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
ValueInfoProto {
|
|
name: INPUT_Y.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let x = Tensor::from_vec(
|
|
vec![
|
|
1.0f32, 2.0f32, 3.0f32, 4.0f32, 5.0f32, 6.0f32, 7.0f32, 8.0f32,
|
|
],
|
|
&[2, 2, 2],
|
|
&Device::Cpu,
|
|
)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs.clone())?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let results = z.to_vec2::<f32>()?;
|
|
|
|
assert_eq!(results, vec![vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]]);
|
|
|
|
att_axis.i = 1;
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Flatten".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![att_axis.clone()],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![
|
|
ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
ValueInfoProto {
|
|
name: INPUT_Y.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let results = z.to_vec2::<f32>()?;
|
|
|
|
assert_eq!(
|
|
results,
|
|
vec![vec![1.0, 2.0, 3.0, 4.0], vec![5.0, 6.0, 7.0, 8.0]]
|
|
);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// Below are ops that are implemented but not tested yet
|
|
|
|
// "MaxPool"
|
|
// #[test]
|
|
|
|
// "AveragePool"
|
|
// #[test]
|
|
|
|
// "BatchNormalization"
|
|
// #[test]
|
|
|
|
// "Squeeze"
|
|
// #[test]
|
|
|
|
// "ConstantOfShape"
|
|
#[test]
|
|
fn test_constant_of_shape() -> Result<()> {
|
|
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-31
|
|
test(&[4i64, 3, 2], Some(1.), &[1., 1., 1.])?;
|
|
|
|
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-31
|
|
test(&[0.], Some(0i64), &[0i64])?;
|
|
|
|
// "value" defaults to 0 f32
|
|
test(&[1i64, 2, 3, 4], None as Option<i64>, &[0., 0., 0., 0.])?;
|
|
|
|
fn test(
|
|
input: impl NdArray,
|
|
value: Option<impl NdArray>,
|
|
expected: impl NdArray,
|
|
) -> Result<()> {
|
|
let mut attribute = vec![];
|
|
|
|
if let Some(value) = value {
|
|
let tensor = Tensor::new(value, &Device::Cpu)?;
|
|
|
|
let (value, data_type) = match tensor.dtype() {
|
|
DType::U8 => (
|
|
tensor.to_vec0::<u8>()?.to_le_bytes().to_vec(),
|
|
DataType::Uint8,
|
|
),
|
|
DType::U32 => (
|
|
tensor.to_vec0::<u32>()?.to_le_bytes().to_vec(),
|
|
DataType::Uint32,
|
|
),
|
|
DType::I64 => (
|
|
tensor.to_vec0::<i64>()?.to_le_bytes().to_vec(),
|
|
DataType::Int64,
|
|
),
|
|
DType::F32 => (
|
|
tensor.to_vec0::<f32>()?.to_le_bytes().to_vec(),
|
|
DataType::Float,
|
|
),
|
|
DType::F64 => (
|
|
tensor.to_vec0::<f64>()?.to_le_bytes().to_vec(),
|
|
DataType::Double,
|
|
),
|
|
_ => panic!("unsupported DType in test"),
|
|
};
|
|
let tensor = TensorProto {
|
|
data_type: data_type.into(),
|
|
dims: tensor.dims().iter().map(|v| *v as i64).collect(),
|
|
raw_data: value,
|
|
segment: None,
|
|
float_data: vec![],
|
|
int32_data: vec![],
|
|
string_data: vec![],
|
|
int64_data: vec![],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
external_data: vec![],
|
|
data_location: 0,
|
|
double_data: vec![],
|
|
uint64_data: vec![],
|
|
};
|
|
|
|
attribute.push(AttributeProto {
|
|
name: "value".to_string(),
|
|
ref_attr_name: "value".to_string(),
|
|
i: 0,
|
|
doc_string: "value".to_string(),
|
|
r#type: AttributeType::Tensor.into(),
|
|
f: 0.0,
|
|
s: vec![],
|
|
t: Some(tensor),
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: vec![],
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
})
|
|
}
|
|
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "ConstantOfShape".to_string(),
|
|
domain: "".to_string(),
|
|
attribute,
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(input, &Device::Cpu)?);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval
|
|
.get(OUTPUT_Z)
|
|
.expect("Output 'z' not found")
|
|
.to_dtype(DType::F64)?;
|
|
|
|
let expected = Tensor::new(expected, &Device::Cpu)?.to_dtype(DType::F64)?;
|
|
match expected.dims().len() {
|
|
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
|
|
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
|
|
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
|
|
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
Ok(())
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
// "Unsqueeze"
|
|
#[test]
|
|
fn test_unsqueeze() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Unsqueeze".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string(), INPUT_Y.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let x = Tensor::from_vec(
|
|
vec![
|
|
1.0f32, 2.0f32, //
|
|
3.0f32, 4.0f32, //
|
|
],
|
|
&[2, 2],
|
|
&Device::Cpu,
|
|
)?;
|
|
let y = Tensor::from_vec(vec![-1i64], &[1], &Device::Cpu)?;
|
|
|
|
let inputs = HashMap::from_iter([(INPUT_X.to_string(), x.clone()), (INPUT_Y.to_string(), y)]);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
assert_eq!(z.dims(), &[2, 2, 1]);
|
|
assert_eq!(
|
|
z.flatten_all()?.to_vec1::<f32>()?,
|
|
x.flatten_all()?.to_vec1::<f32>()?
|
|
);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Clip"
|
|
// #[test]
|
|
|
|
// "Gather"
|
|
#[test]
|
|
fn test_gather_operation() -> Result<()> {
|
|
// test taken from https://onnx.ai/onnx/operators/onnx__Gather.html#summary.
|
|
test(
|
|
&[[1.0, 1.2], [2.3, 3.4], [4.5, 5.7]],
|
|
&[[0i64, 1], [1, 2]],
|
|
0,
|
|
&[[[1.0, 1.2], [2.3, 3.4]], [[2.3, 3.4], [4.5, 5.7]]],
|
|
)?;
|
|
|
|
// test taken from https://onnx.ai/onnx/operators/onnx__Gather.html#summary.
|
|
test(
|
|
&[[1.0, 1.2, 1.9], [2.3, 3.4, 3.9], [4.5, 5.7, 5.9]],
|
|
&[[0i64, 2]],
|
|
1,
|
|
&[[[1.0, 1.9]], [[2.3, 3.9]], [[4.5, 5.9]]],
|
|
)?;
|
|
|
|
// all the tests below are generated from numpy.take, which works like
|
|
// onnx's Gather operation.
|
|
test(&[1.0, 2.0, 3.0, 4.0], 3i64, 0, 4.0)?;
|
|
|
|
test(&[[1.0, 2.0, 3.0, 4.0]], 3i64, 1, &[4.0])?;
|
|
|
|
test(
|
|
&[[1.0], [2.0], [3.0], [4.0]],
|
|
&[3i64, 2],
|
|
0,
|
|
&[[4.0], [3.0]],
|
|
)?;
|
|
|
|
test(
|
|
&[
|
|
[[1.0, 2.0], [3.0, 4.0]],
|
|
[[5.0, 6.0], [7.0, 8.0]],
|
|
[[9.0, 10.0], [11.0, 12.0]],
|
|
[[13.0, 14.0], [15.0, 16.0]],
|
|
],
|
|
1i64,
|
|
0,
|
|
&[[5.0, 6.0], [7.0, 8.0]],
|
|
)?;
|
|
|
|
test(
|
|
&[
|
|
[[1.0, 2.0], [3.0, 4.0]],
|
|
[[5.0, 6.0], [7.0, 8.0]],
|
|
[[9.0, 10.0], [11.0, 12.0]],
|
|
[[13.0, 14.0], [15.0, 16.0]],
|
|
],
|
|
&[1i64, 0],
|
|
0,
|
|
&[[[5.0, 6.0], [7.0, 8.0]], [[1.0, 2.0], [3.0, 4.0]]],
|
|
)?;
|
|
|
|
fn test(
|
|
data: impl NdArray,
|
|
indices: impl NdArray,
|
|
axis: i64,
|
|
expected: impl NdArray,
|
|
) -> Result<()> {
|
|
let att_axis = AttributeProto {
|
|
name: "axis".to_string(),
|
|
ref_attr_name: "axis".to_string(),
|
|
i: axis,
|
|
doc_string: "axis".to_string(),
|
|
r#type: 2,
|
|
f: 0.0,
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: vec![],
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Gather".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![att_axis],
|
|
input: vec![INPUT_X.to_string(), INPUT_Y.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(data, &Device::Cpu)?);
|
|
inputs.insert(INPUT_Y.to_string(), Tensor::new(indices, &Device::Cpu)?);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let expected = Tensor::new(expected, &Device::Cpu)?;
|
|
match expected.dims().len() {
|
|
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
|
|
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
|
|
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
|
|
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
Ok(())
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
// "Size"
|
|
#[test]
|
|
fn test_size_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Size".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let x = Tensor::from_vec(vec![1.0f32, 2.0f32, 3.0f32, 4.0f32], &[2, 2], &Device::Cpu)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
let results = z.to_scalar::<i64>()?;
|
|
assert_eq!(results, 4);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Shape"
|
|
#[test]
|
|
fn test_shape_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Shape".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let x = Tensor::from_vec(vec![1.0f32, 2.0f32, 3.0f32, 4.0f32], &[2, 2], &Device::Cpu)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
let results = z.to_vec1::<i64>()?;
|
|
assert_eq!(results, vec![2, 2]);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Conv"
|
|
// #[test]
|
|
|
|
// "Concat"
|
|
// #[test]
|
|
|
|
// "Abs"
|
|
#[test]
|
|
fn test_abs_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Abs".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![
|
|
ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
ValueInfoProto {
|
|
name: INPUT_Y.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let x = Tensor::from_vec(
|
|
vec![-1.0f32, 2.0f32, -3.0f32, 4.0f32],
|
|
&[2, 2],
|
|
&Device::Cpu,
|
|
)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let results = z.to_vec2::<f32>()?;
|
|
|
|
assert_eq!(results, vec![vec![1.0, 2.0], vec![3.0, 4.0]]);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Cos"
|
|
#[test]
|
|
fn test_cos_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Cos".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![
|
|
ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
ValueInfoProto {
|
|
name: INPUT_Y.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let x = Tensor::from_vec(vec![0.0f32, 1.0f32, 2.0f32, 3.0f32], &[2, 2], &Device::Cpu)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
assert_eq!(to_vec2_round(z, 4)?, [[1.0, 0.5403], [-0.4161, -0.99]]);
|
|
Ok(())
|
|
}
|
|
|
|
// "Sin"
|
|
#[test]
|
|
fn test_sin_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Sin".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![
|
|
ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
ValueInfoProto {
|
|
name: INPUT_Y.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let x = Tensor::from_vec(vec![0.0f32, 1.0f32, 2.0f32, 3.0f32], &[2, 2], &Device::Cpu)?;
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
assert_eq!(to_vec2_round(z, 4)?, [[0.0, 0.8415], [0.9093, 0.1411]]);
|
|
Ok(())
|
|
}
|
|
|
|
// "Neg"
|
|
#[test]
|
|
fn test_neg_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Neg".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![
|
|
ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
ValueInfoProto {
|
|
name: INPUT_Y.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let x = Tensor::from_vec(vec![1.0f32, 2.0f32, 3.0f32, 4.0f32], &[2, 2], &Device::Cpu)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let results = z.to_vec2::<f32>()?;
|
|
|
|
assert_eq!(results, vec![vec![-1.0, -2.0], vec![-3.0, -4.0]]);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Erf"
|
|
// #[test]
|
|
|
|
// "Tanh"
|
|
#[test]
|
|
fn test_tanh_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Tanh".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![
|
|
ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
ValueInfoProto {
|
|
name: INPUT_Y.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let x = Tensor::from_vec(vec![0.0f32, 1.0f32, 2.0f32, 3.0f32], &[2, 2], &Device::Cpu)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let results = z.to_vec2::<f32>()?;
|
|
|
|
assert_eq!(
|
|
results,
|
|
vec![vec![0.0, 0.7615942], vec![0.9640276, 0.9950548]]
|
|
);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Sigmoid"
|
|
#[test]
|
|
fn test_sigmoid_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Sigmoid".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![
|
|
ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
ValueInfoProto {
|
|
name: INPUT_Y.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let x = Tensor::from_vec(vec![0.0f32, 1.0f32, 2.0f32, 3.0f32], &[2, 2], &Device::Cpu)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let results = z.to_vec2::<f32>()?;
|
|
|
|
assert_eq!(
|
|
results,
|
|
vec![vec![0.5, 0.7310586], vec![0.880797, 0.95257413]]
|
|
);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Gelu"
|
|
#[test]
|
|
fn test_gelu_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Gelu".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![
|
|
ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
ValueInfoProto {
|
|
name: INPUT_Y.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
},
|
|
],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let x = Tensor::from_vec(vec![0.0f32, 1.0f32, 2.0f32, 3.0f32], &[2, 2], &Device::Cpu)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let results = z.to_vec2::<f32>()?;
|
|
|
|
assert_eq!(
|
|
results,
|
|
vec![vec![0.0, 0.8413448], vec![1.9544997, 2.9959502]]
|
|
);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Relu"
|
|
#[test]
|
|
fn test_relu_operation() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Relu".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let x = Tensor::from_vec(
|
|
vec![-1.0f32, 1.0f32, -2.0f32, 3.0f32],
|
|
&[2, 2],
|
|
&Device::Cpu,
|
|
)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let results = z.to_vec2::<f32>()?;
|
|
|
|
assert_eq!(results, vec![vec![0.0, 1.0], vec![0.0, 3.0]]);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Constant"
|
|
// #[test]
|
|
|
|
// "Cast"
|
|
// #[test]
|
|
|
|
// "ReduceMean"
|
|
#[test]
|
|
fn test_reduce_mean() -> Result<()> {
|
|
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-120 default_axes_keepdims
|
|
test(
|
|
&[
|
|
[[5., 1.], [20., 2.]],
|
|
[[30., 1.], [40., 2.]],
|
|
[[55., 1.], [60., 2.]],
|
|
],
|
|
None,
|
|
1,
|
|
&[[[18.25]]],
|
|
)?;
|
|
|
|
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-120 do_no_keepdims
|
|
test(
|
|
&[
|
|
[[5., 1.], [20., 2.]],
|
|
[[30., 1.], [40., 2.]],
|
|
[[55., 1.], [60., 2.]],
|
|
],
|
|
Some(vec![1]),
|
|
0,
|
|
&[[12.5, 1.5], [35.0, 1.5], [57.5, 1.5]],
|
|
)?;
|
|
|
|
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-120 keepdims
|
|
test(
|
|
&[
|
|
[[5., 1.], [20., 2.]],
|
|
[[30., 1.], [40., 2.]],
|
|
[[55., 1.], [60., 2.]],
|
|
],
|
|
Some(vec![1]),
|
|
1,
|
|
&[[[12.5, 1.5]], [[35.0, 1.5]], [[57.5, 1.5]]],
|
|
)?;
|
|
|
|
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-120 negative_axes_keepdims
|
|
test(
|
|
&[
|
|
[[5., 1.], [20., 2.]],
|
|
[[30., 1.], [40., 2.]],
|
|
[[55., 1.], [60., 2.]],
|
|
],
|
|
Some(vec![-2]),
|
|
1,
|
|
&[[[12.5, 1.5]], [[35.0, 1.5]], [[57.5, 1.5]]],
|
|
)?;
|
|
|
|
// All the test data below was generated based on numpy's np.mean
|
|
test(
|
|
&[
|
|
[[5., 1.], [20., 2.]],
|
|
[[30., 1.], [40., 2.]],
|
|
[[55., 1.], [60., 2.]],
|
|
],
|
|
Some(vec![1, 2]),
|
|
0,
|
|
&[7.0, 18.25, 29.5],
|
|
)?;
|
|
|
|
test(
|
|
&[
|
|
[[5., 1.], [20., 2.]],
|
|
[[30., 1.], [40., 2.]],
|
|
[[55., 1.], [60., 2.]],
|
|
],
|
|
Some(vec![1, 2]),
|
|
1,
|
|
&[[[7.0]], [[18.25]], [[29.5]]],
|
|
)?;
|
|
|
|
test(&[1., 2., 3.], None, 1, &[2.0])?;
|
|
|
|
fn test(
|
|
data: impl NdArray,
|
|
axes: Option<Vec<i64>>,
|
|
keepdims: i64,
|
|
expected: impl NdArray,
|
|
) -> Result<()> {
|
|
let has_axes = axes.is_some();
|
|
|
|
let att_axes = AttributeProto {
|
|
name: "axes".to_string(),
|
|
ref_attr_name: "axes".to_string(),
|
|
i: 0,
|
|
doc_string: "axes".to_string(),
|
|
r#type: 7,
|
|
f: 0.0,
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: axes.unwrap_or_default(),
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
|
|
let att_keepdims = AttributeProto {
|
|
name: "keepdims".to_string(),
|
|
ref_attr_name: "keepdims".to_string(),
|
|
i: keepdims,
|
|
doc_string: "keepdims".to_string(),
|
|
r#type: 2,
|
|
f: 0.0,
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: vec![],
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "ReduceMean".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: if has_axes {
|
|
vec![att_axes, att_keepdims]
|
|
} else {
|
|
vec![att_keepdims]
|
|
},
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(data, &Device::Cpu)?);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let expected = Tensor::new(expected, &Device::Cpu)?;
|
|
match expected.dims().len() {
|
|
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
|
|
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
|
|
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
|
|
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
Ok(())
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Sqrt"
|
|
#[test]
|
|
fn test_sqrt() -> Result<()> {
|
|
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-155
|
|
test(&[1., 4., 9.], &[1., 2., 3.])?;
|
|
|
|
fn test(data: impl NdArray, expected: impl NdArray) -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Sqrt".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(data, &Device::Cpu)?);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let expected = Tensor::new(expected, &Device::Cpu)?;
|
|
match expected.dims().len() {
|
|
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
|
|
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
|
|
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
|
|
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
Ok(())
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "RandomUniform"
|
|
#[test]
|
|
fn test_random_uniform() -> Result<()> {
|
|
test(vec![3, 2, 1, 4], None, None)?;
|
|
test(vec![2, 2, 2, 2], Some(-10.0), None)?;
|
|
test(vec![2, 2, 2, 2], None, Some(10.0))?;
|
|
test(vec![1, 2, 3, 4], Some(-10.0), Some(10.0))?;
|
|
|
|
fn test(shape: Vec<i64>, low: Option<f32>, high: Option<f32>) -> Result<()> {
|
|
let att_low = AttributeProto {
|
|
name: "low".to_string(),
|
|
ref_attr_name: "low".to_string(),
|
|
i: 0,
|
|
doc_string: "low".to_string(),
|
|
r#type: 1, // FLOAT
|
|
f: low.unwrap_or(0.0),
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: vec![],
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
let att_high = AttributeProto {
|
|
name: "high".to_string(),
|
|
ref_attr_name: "high".to_string(),
|
|
i: 0,
|
|
doc_string: "high".to_string(),
|
|
r#type: 1, // FLOAT
|
|
f: high.unwrap_or(1.0),
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: vec![],
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
let att_shape = AttributeProto {
|
|
name: "shape".to_string(),
|
|
ref_attr_name: "shape".to_string(),
|
|
i: 0,
|
|
doc_string: "shape".to_string(),
|
|
r#type: 7, // INTS
|
|
f: 0.0,
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: shape,
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
let att_dtype = AttributeProto {
|
|
name: "dtype".to_string(),
|
|
ref_attr_name: "dtype".to_string(),
|
|
i: 11, // DOUBLE
|
|
doc_string: "dtype".to_string(),
|
|
r#type: 2, // INT
|
|
f: 0.0,
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: vec![],
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
let attrs = {
|
|
let mut mut_attrs = vec![att_shape, att_dtype];
|
|
if low.is_some() {
|
|
mut_attrs.push(att_low);
|
|
}
|
|
if high.is_some() {
|
|
mut_attrs.push(att_high);
|
|
}
|
|
mut_attrs
|
|
};
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "RandomUniform".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: attrs,
|
|
input: vec![],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let eval = candle_onnx::simple_eval(&manual_graph, HashMap::new())?;
|
|
assert_eq!(eval.len(), 1);
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
let min = z
|
|
.flatten_all()?
|
|
.to_vec1()?
|
|
.into_iter()
|
|
.reduce(f64::min)
|
|
.unwrap();
|
|
let max = z
|
|
.flatten_all()?
|
|
.to_vec1()?
|
|
.into_iter()
|
|
.reduce(f64::max)
|
|
.unwrap();
|
|
assert!(min >= low.unwrap_or(0.0).into());
|
|
assert!(max <= high.unwrap_or(1.0).into());
|
|
assert_ne!(min, max);
|
|
Ok(())
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "RandomNormal"
|
|
#[test]
|
|
fn test_random_normal() -> Result<()> {
|
|
test(vec![3, 2, 1, 4], None, None)?;
|
|
test(vec![2, 2, 2, 2], Some(-10.0), None)?;
|
|
test(vec![2, 2, 2, 2], None, Some(10.0))?;
|
|
test(vec![1, 2, 3, 4], Some(-10.0), Some(10.0))?;
|
|
|
|
fn test(shape: Vec<i64>, mean: Option<f32>, scale: Option<f32>) -> Result<()> {
|
|
let att_mean = AttributeProto {
|
|
name: "mean".to_string(),
|
|
ref_attr_name: "mean".to_string(),
|
|
i: 0,
|
|
doc_string: "mean".to_string(),
|
|
r#type: 1, // FLOAT
|
|
f: mean.unwrap_or(0.0),
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: vec![],
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
let att_scale = AttributeProto {
|
|
name: "scale".to_string(),
|
|
ref_attr_name: "scale".to_string(),
|
|
i: 0,
|
|
doc_string: "scale".to_string(),
|
|
r#type: 1, // FLOAT
|
|
f: scale.unwrap_or(1.0),
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: vec![],
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
let att_shape = AttributeProto {
|
|
name: "shape".to_string(),
|
|
ref_attr_name: "shape".to_string(),
|
|
i: 0,
|
|
doc_string: "shape".to_string(),
|
|
r#type: 7, // INTS
|
|
f: 0.0,
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: shape,
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
let att_dtype = AttributeProto {
|
|
name: "dtype".to_string(),
|
|
ref_attr_name: "dtype".to_string(),
|
|
i: 11, // DOUBLE
|
|
doc_string: "dtype".to_string(),
|
|
r#type: 2, // INT
|
|
f: 0.0,
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: vec![],
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
let attrs = {
|
|
let mut mut_attrs = vec![att_shape, att_dtype];
|
|
if mean.is_some() {
|
|
mut_attrs.push(att_mean);
|
|
}
|
|
if scale.is_some() {
|
|
mut_attrs.push(att_scale);
|
|
}
|
|
mut_attrs
|
|
};
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "RandomNormal".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: attrs,
|
|
input: vec![],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let eval = candle_onnx::simple_eval(&manual_graph, HashMap::new())?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
let data = z.flatten_all()?.to_vec1::<f64>()?;
|
|
|
|
// test if values are unique
|
|
for (i, a) in data.iter().enumerate() {
|
|
for (j, b) in data.iter().enumerate() {
|
|
if i == j {
|
|
continue;
|
|
};
|
|
assert_ne!(a, b);
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Range"
|
|
#[test]
|
|
fn test_range() -> Result<()> {
|
|
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-113
|
|
test(1., 5., 2., &[1., 3.])?;
|
|
|
|
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-113
|
|
test(10i64, 6i64, -3i64, &[10i64, 7i64])?;
|
|
|
|
fn test(
|
|
start: impl NdArray,
|
|
limit: impl NdArray,
|
|
delta: impl NdArray,
|
|
expected: impl NdArray,
|
|
) -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Range".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![
|
|
INPUT_X.to_string(),
|
|
INPUT_Y.to_string(),
|
|
INPUT_A.to_string(),
|
|
],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(start, &Device::Cpu)?);
|
|
inputs.insert(INPUT_Y.to_string(), Tensor::new(limit, &Device::Cpu)?);
|
|
inputs.insert(INPUT_A.to_string(), Tensor::new(delta, &Device::Cpu)?);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval
|
|
.get(OUTPUT_Z)
|
|
.expect("Output 'z' not found")
|
|
.to_dtype(DType::F64)?;
|
|
|
|
let expected = Tensor::new(expected, &Device::Cpu)?.to_dtype(DType::F64)?;
|
|
match expected.dims().len() {
|
|
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
|
|
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
|
|
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
|
|
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
Ok(())
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Greater"
|
|
#[test]
|
|
fn test_greater() -> Result<()> {
|
|
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-63
|
|
test(&[1., 2., 3.], &[3., 2., 1.], &[0u8, 0, 1])?;
|
|
|
|
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-63
|
|
test(&[1., 2., 3.], 2., &[0u8, 0, 1])?;
|
|
|
|
fn test(a: impl NdArray, b: impl NdArray, expected: impl NdArray) -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Greater".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string(), INPUT_Y.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(a, &Device::Cpu)?);
|
|
inputs.insert(INPUT_Y.to_string(), Tensor::new(b, &Device::Cpu)?);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval
|
|
.get(OUTPUT_Z)
|
|
.expect("Output 'z' not found")
|
|
.to_dtype(DType::F64)?;
|
|
|
|
let expected = Tensor::new(expected, &Device::Cpu)?.to_dtype(DType::F64)?;
|
|
match expected.dims().len() {
|
|
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
|
|
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
|
|
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
|
|
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
Ok(())
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Less"
|
|
#[test]
|
|
fn test_less() -> Result<()> {
|
|
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-81
|
|
test(&[1., 2., 3.], &[3., 2., 1.], &[1u8, 0, 0])?;
|
|
|
|
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-81
|
|
test(&[1., 2., 3.], 2., &[1u8, 0, 0])?;
|
|
|
|
fn test(a: impl NdArray, b: impl NdArray, expected: impl NdArray) -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Less".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string(), INPUT_Y.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(a, &Device::Cpu)?);
|
|
inputs.insert(INPUT_Y.to_string(), Tensor::new(b, &Device::Cpu)?);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval
|
|
.get(OUTPUT_Z)
|
|
.expect("Output 'z' not found")
|
|
.to_dtype(DType::F64)?;
|
|
|
|
let expected = Tensor::new(expected, &Device::Cpu)?.to_dtype(DType::F64)?;
|
|
match expected.dims().len() {
|
|
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
|
|
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
|
|
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
|
|
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
Ok(())
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Log"
|
|
#[test]
|
|
fn test_log() -> Result<()> {
|
|
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-82
|
|
test(&[1., 10.], &[0., std::f64::consts::LN_10])?;
|
|
|
|
fn test(data: impl NdArray, expected: impl NdArray) -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Log".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(data, &Device::Cpu)?);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let expected = Tensor::new(expected, &Device::Cpu)?;
|
|
match expected.dims().len() {
|
|
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
|
|
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
|
|
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
|
|
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
Ok(())
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Min"
|
|
#[test]
|
|
fn test_min() -> Result<()> {
|
|
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-94
|
|
test(&[3., 2., 1.], &[1., 4., 4.], &[2., 5., 0.], &[1., 2., 0.])?;
|
|
|
|
fn test(
|
|
a: impl NdArray,
|
|
b: impl NdArray,
|
|
c: impl NdArray,
|
|
expected: impl NdArray,
|
|
) -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Min".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![
|
|
INPUT_X.to_string(),
|
|
INPUT_Y.to_string(),
|
|
INPUT_A.to_string(),
|
|
],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(a, &Device::Cpu)?);
|
|
inputs.insert(INPUT_Y.to_string(), Tensor::new(b, &Device::Cpu)?);
|
|
inputs.insert(INPUT_A.to_string(), Tensor::new(c, &Device::Cpu)?);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let expected = Tensor::new(expected, &Device::Cpu)?;
|
|
match expected.dims().len() {
|
|
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
|
|
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
|
|
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
|
|
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
Ok(())
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "Where"
|
|
#[test]
|
|
fn test_where() -> Result<()> {
|
|
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-173
|
|
test(
|
|
&[[1u8, 0], [1, 1]],
|
|
&[[1i64, 2], [3, 4]],
|
|
&[[9i64, 8], [7, 6]],
|
|
&[[1i64, 8], [3, 4]],
|
|
)?;
|
|
|
|
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-173
|
|
test(
|
|
&[[1u8, 0], [1, 1]],
|
|
&[[1., 2.], [3., 4.]],
|
|
&[[9., 8.], [7., 6.]],
|
|
&[[1., 8.], [3., 4.]],
|
|
)?;
|
|
|
|
fn test(
|
|
condition: impl NdArray,
|
|
x: impl NdArray,
|
|
y: impl NdArray,
|
|
expected: impl NdArray,
|
|
) -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Where".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![
|
|
INPUT_X.to_string(),
|
|
INPUT_Y.to_string(),
|
|
INPUT_A.to_string(),
|
|
],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(condition, &Device::Cpu)?);
|
|
inputs.insert(INPUT_Y.to_string(), Tensor::new(x, &Device::Cpu)?);
|
|
inputs.insert(INPUT_A.to_string(), Tensor::new(y, &Device::Cpu)?);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval
|
|
.get(OUTPUT_Z)
|
|
.expect("Output 'z' not found")
|
|
.to_dtype(DType::F64)?;
|
|
|
|
let expected = Tensor::new(expected, &Device::Cpu)?.to_dtype(DType::F64)?;
|
|
match expected.dims().len() {
|
|
0 => assert_eq!(z.to_vec0::<f64>()?, expected.to_vec0::<f64>()?),
|
|
1 => assert_eq!(z.to_vec1::<f64>()?, expected.to_vec1::<f64>()?),
|
|
2 => assert_eq!(z.to_vec2::<f64>()?, expected.to_vec2::<f64>()?),
|
|
3 => assert_eq!(z.to_vec3::<f64>()?, expected.to_vec3::<f64>()?),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
Ok(())
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn test_floor() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Floor".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let x = Tensor::from_vec(
|
|
// some values taken from https://numpy.org/doc/stable/reference/generated/numpy.floor.html
|
|
vec![
|
|
f64::NAN,
|
|
f64::INFINITY,
|
|
f64::NEG_INFINITY,
|
|
-1.7,
|
|
-1.5,
|
|
-0.2,
|
|
0.2,
|
|
1.5,
|
|
1.7,
|
|
2.0,
|
|
],
|
|
&[10],
|
|
&Device::Cpu,
|
|
)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let results = z.to_vec1::<f64>()?;
|
|
|
|
assert!(results[0].is_nan());
|
|
assert_eq!(
|
|
results[1..],
|
|
vec![
|
|
f64::INFINITY,
|
|
f64::NEG_INFINITY,
|
|
-2.,
|
|
-2.,
|
|
-1.,
|
|
0.,
|
|
1.,
|
|
1.,
|
|
2.
|
|
]
|
|
);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn test_ceil() -> Result<()> {
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Ceil".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: vec![],
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![ValueInfoProto {
|
|
name: INPUT_X.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let x = Tensor::from_vec(
|
|
// some values taken from https://numpy.org/doc/stable/reference/generated/numpy.ceil.html
|
|
vec![
|
|
f64::NAN,
|
|
f64::INFINITY,
|
|
f64::NEG_INFINITY,
|
|
-1.7,
|
|
-1.5,
|
|
-0.2,
|
|
0.2,
|
|
1.5,
|
|
1.7,
|
|
2.0,
|
|
],
|
|
&[10],
|
|
&Device::Cpu,
|
|
)?;
|
|
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), x);
|
|
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
assert_eq!(eval.len(), 1);
|
|
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let results = z.to_vec1::<f64>()?;
|
|
|
|
assert!(results[0].is_nan());
|
|
assert_eq!(
|
|
results[1..],
|
|
vec![
|
|
f64::INFINITY,
|
|
f64::NEG_INFINITY,
|
|
-1.,
|
|
-1.,
|
|
-0.,
|
|
1.,
|
|
2.,
|
|
2.,
|
|
2.
|
|
]
|
|
);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "ArgMin"
|
|
#[test]
|
|
fn test_argmin() -> Result<()> {
|
|
// tests from https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-7
|
|
// default_axes_keepdims
|
|
test(
|
|
&[[2u32, 1u32], [3u32, 10u32]],
|
|
None,
|
|
Some(1),
|
|
None,
|
|
&[[0i64, 0i64]],
|
|
)?;
|
|
// keepdims
|
|
test(
|
|
&[[2u32, 1u32], [3u32, 10u32]],
|
|
Some(1),
|
|
Some(1),
|
|
None,
|
|
&[[1i64], [0i64]],
|
|
)?;
|
|
// // negative_axis_keepdims
|
|
test(
|
|
&[[2u32, 1u32], [3u32, 10u32]],
|
|
Some(-1),
|
|
Some(1),
|
|
None,
|
|
&[[1i64], [0i64]],
|
|
)?;
|
|
// no_keepdims
|
|
test(
|
|
&[[2u32, 1u32], [3u32, 10u32]],
|
|
None,
|
|
Some(0),
|
|
None,
|
|
&[0i64, 0i64],
|
|
)?;
|
|
// tests from https://pytorch.org/docs/stable/generated/torch.argmin.html#torch.argmin
|
|
test(
|
|
&[
|
|
[0.1139, 0.2254, -0.1381, 0.3687],
|
|
[1.0100, -1.1975, -0.0102, -0.4732],
|
|
[-0.9240, 0.1207, -0.7506, -1.0213],
|
|
[1.7809, -1.2960, 0.9384, 0.1438],
|
|
],
|
|
Some(1),
|
|
Some(0),
|
|
None,
|
|
&[2i64, 1i64, 3i64, 1i64],
|
|
)?;
|
|
test(
|
|
&[
|
|
[0.1139, 0.2254, -0.1381, 0.3687],
|
|
[1.0100, -1.1975, -0.0102, -0.4732],
|
|
[-0.9240, 0.1207, -0.7506, -1.0213],
|
|
[1.7809, -1.2960, 0.9384, 0.1438],
|
|
],
|
|
Some(1),
|
|
None,
|
|
None,
|
|
&[[2i64], [1i64], [3i64], [1i64]],
|
|
)?;
|
|
fn test(
|
|
data: impl NdArray,
|
|
axis: Option<i64>,
|
|
keepdims: Option<i64>,
|
|
select_last_index: Option<i64>,
|
|
expected: impl NdArray,
|
|
) -> Result<()> {
|
|
let att_axis = AttributeProto {
|
|
name: "axis".to_string(),
|
|
ref_attr_name: "axis".to_string(),
|
|
i: axis.unwrap_or(0),
|
|
doc_string: "axis".to_string(),
|
|
r#type: 2, // INT
|
|
f: 0.0,
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: vec![],
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
let att_keepdims = AttributeProto {
|
|
name: "keepdims".to_string(),
|
|
ref_attr_name: "keepdims".to_string(),
|
|
i: keepdims.unwrap_or(1),
|
|
doc_string: "keepdims".to_string(),
|
|
r#type: 2, // INT
|
|
f: 0.0,
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: vec![],
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
let att_select_last_index = AttributeProto {
|
|
name: "select_last_index".to_string(),
|
|
ref_attr_name: "select_last_index".to_string(),
|
|
i: select_last_index.unwrap_or(0),
|
|
doc_string: "select_last_index".to_string(),
|
|
r#type: 2, // INT
|
|
f: 0.0,
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: vec![],
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
let attrs = {
|
|
let mut mut_attrs = vec![];
|
|
if axis.is_some() {
|
|
mut_attrs.push(att_axis);
|
|
}
|
|
if keepdims.is_some() {
|
|
mut_attrs.push(att_keepdims);
|
|
}
|
|
if select_last_index.is_some() {
|
|
mut_attrs.push(att_select_last_index);
|
|
}
|
|
mut_attrs
|
|
};
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "ArgMin".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: attrs,
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(data, &Device::Cpu)?);
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let expected = Tensor::new(expected, &Device::Cpu)?;
|
|
match expected.dims().len() {
|
|
1 => assert_eq!(z.to_vec1::<i64>()?, expected.to_vec1::<i64>()?),
|
|
2 => assert_eq!(z.to_vec2::<i64>()?, expected.to_vec2::<i64>()?),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
Ok(())
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "ArgMax"
|
|
#[test]
|
|
fn test_argmax() -> Result<()> {
|
|
// tests from https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-6
|
|
// default_axes_keepdims
|
|
test(
|
|
&[[2u32, 1u32], [3u32, 10u32]],
|
|
None,
|
|
Some(1),
|
|
None,
|
|
&[[1i64, 1i64]],
|
|
)?;
|
|
// keepdims
|
|
test(
|
|
&[[2u32, 1u32], [3u32, 10u32]],
|
|
Some(1),
|
|
Some(1),
|
|
None,
|
|
&[[0i64], [1i64]],
|
|
)?;
|
|
// // negative_axis_keepdims
|
|
test(
|
|
&[[2u32, 1u32], [3u32, 10u32]],
|
|
Some(-1),
|
|
Some(1),
|
|
None,
|
|
&[[0i64], [1i64]],
|
|
)?;
|
|
// no_keepdims
|
|
test(
|
|
&[[2u32, 1u32], [3u32, 10u32]],
|
|
None,
|
|
Some(0),
|
|
None,
|
|
&[1i64, 1i64],
|
|
)?;
|
|
// tests from https://pytorch.org/docs/stable/generated/torch.argmax.html
|
|
test(
|
|
&[
|
|
[1.3398, 0.2663, -0.2686, 0.2450],
|
|
[-0.7401, -0.8805, -0.3402, -1.1936],
|
|
[0.4907, -1.3948, -1.0691, -0.3132],
|
|
[-1.6092, 0.5419, -0.2993, 0.3195],
|
|
],
|
|
Some(1),
|
|
Some(0),
|
|
None,
|
|
&[0i64, 2i64, 0i64, 1i64],
|
|
)?;
|
|
test(
|
|
&[
|
|
[1.3398, 0.2663, -0.2686, 0.2450],
|
|
[-0.7401, -0.8805, -0.3402, -1.1936],
|
|
[0.4907, -1.3948, -1.0691, -0.3132],
|
|
[-1.6092, 0.5419, -0.2993, 0.3195],
|
|
],
|
|
Some(1),
|
|
None,
|
|
None,
|
|
&[[0i64], [2i64], [0i64], [1i64]],
|
|
)?;
|
|
fn test(
|
|
data: impl NdArray,
|
|
axis: Option<i64>,
|
|
keepdims: Option<i64>,
|
|
select_last_index: Option<i64>,
|
|
expected: impl NdArray,
|
|
) -> Result<()> {
|
|
let att_axis = AttributeProto {
|
|
name: "axis".to_string(),
|
|
ref_attr_name: "axis".to_string(),
|
|
i: axis.unwrap_or(0),
|
|
doc_string: "axis".to_string(),
|
|
r#type: 2, // INT
|
|
f: 0.0,
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: vec![],
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
let att_keepdims = AttributeProto {
|
|
name: "keepdims".to_string(),
|
|
ref_attr_name: "keepdims".to_string(),
|
|
i: keepdims.unwrap_or(1),
|
|
doc_string: "keepdims".to_string(),
|
|
r#type: 2, // INT
|
|
f: 0.0,
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: vec![],
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
let att_select_last_index = AttributeProto {
|
|
name: "select_last_index".to_string(),
|
|
ref_attr_name: "select_last_index".to_string(),
|
|
i: select_last_index.unwrap_or(0),
|
|
doc_string: "select_last_index".to_string(),
|
|
r#type: 2, // INT
|
|
f: 0.0,
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: vec![],
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
let attrs = {
|
|
let mut mut_attrs = vec![];
|
|
if axis.is_some() {
|
|
mut_attrs.push(att_axis);
|
|
}
|
|
if keepdims.is_some() {
|
|
mut_attrs.push(att_keepdims);
|
|
}
|
|
if select_last_index.is_some() {
|
|
mut_attrs.push(att_select_last_index);
|
|
}
|
|
mut_attrs
|
|
};
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "ArgMax".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: attrs,
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(data, &Device::Cpu)?);
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let expected = Tensor::new(expected, &Device::Cpu)?;
|
|
match expected.dims().len() {
|
|
1 => assert_eq!(z.to_vec1::<i64>()?, expected.to_vec1::<i64>()?),
|
|
2 => assert_eq!(z.to_vec2::<i64>()?, expected.to_vec2::<i64>()?),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
Ok(())
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "LeakyRelu"
|
|
#[test]
|
|
fn test_leakyrelu() -> Result<()> {
|
|
// tests from https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-80
|
|
// leakyrelu
|
|
test(&[-1.0, 0.0, 1.0], Some(0.1), &[-0.1, 0.0, 1.0])?;
|
|
fn test(data: impl NdArray, alpha: Option<f32>, expected: impl NdArray) -> Result<()> {
|
|
let att_alpha = AttributeProto {
|
|
name: "alpha".to_string(),
|
|
ref_attr_name: "alpha".to_string(),
|
|
i: 0,
|
|
doc_string: "alpha".to_string(),
|
|
r#type: 1, // FLOAT
|
|
f: alpha.unwrap_or(0.01),
|
|
s: vec![],
|
|
t: None,
|
|
g: None,
|
|
sparse_tensor: None,
|
|
tp: None,
|
|
floats: vec![],
|
|
ints: vec![],
|
|
strings: vec![],
|
|
tensors: vec![],
|
|
graphs: vec![],
|
|
sparse_tensors: vec![],
|
|
type_protos: vec![],
|
|
};
|
|
let attrs = {
|
|
let mut mut_attrs = vec![];
|
|
if alpha.is_some() {
|
|
mut_attrs.push(att_alpha);
|
|
}
|
|
mut_attrs
|
|
};
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "LeakyRelu".to_string(),
|
|
domain: "".to_string(),
|
|
attribute: attrs,
|
|
input: vec![INPUT_X.to_string()],
|
|
output: vec![OUTPUT_Z.to_string()],
|
|
name: "".to_string(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
name: "".to_string(),
|
|
initializer: vec![],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: OUTPUT_Z.to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: None,
|
|
}],
|
|
value_info: vec![],
|
|
doc_string: "".to_string(),
|
|
sparse_initializer: vec![],
|
|
quantization_annotation: vec![],
|
|
}));
|
|
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
|
inputs.insert(INPUT_X.to_string(), Tensor::new(data, &Device::Cpu)?);
|
|
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
|
|
|
let expected = Tensor::new(expected, &Device::Cpu)?;
|
|
for both in z
|
|
.to_vec1::<f64>()?
|
|
.iter()
|
|
.zip(expected.to_vec1::<f64>()?.iter())
|
|
{
|
|
let (act, exp) = both;
|
|
assert!(f64::abs(act - exp) < f32::EPSILON.into());
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// "If"
|
|
#[test]
|
|
fn test_if() -> Result<()> {
|
|
let x = vec![1.0, 2.0, 3.0, 4.0, 5.0];
|
|
let y = vec![5.0, 4.0, 3.0, 2.0, 1.0];
|
|
let output_type_proto = Some(TypeProto {
|
|
value: Some(type_proto::Value::TensorType(type_proto::Tensor {
|
|
elem_type: DataType::Float.into(),
|
|
shape: Some(TensorShapeProto {
|
|
dim: vec![Dimension {
|
|
denotation: "".to_string(),
|
|
value: Some(dimension::Value::DimValue(5)),
|
|
}],
|
|
}),
|
|
})),
|
|
denotation: "".to_string(),
|
|
});
|
|
let then_branch = GraphProto {
|
|
output: vec![ValueInfoProto {
|
|
name: "then_out".to_string(),
|
|
r#type: output_type_proto.clone(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
node: vec![NodeProto {
|
|
op_type: "Constant".to_string(),
|
|
input: vec![],
|
|
output: vec!["then_out".to_string()],
|
|
attribute: vec![AttributeProto {
|
|
name: "value".to_string(),
|
|
r#type: AttributeType::Tensor.into(),
|
|
t: Some(TensorProto {
|
|
dims: vec![x.len() as i64],
|
|
float_data: x.clone(),
|
|
data_type: DataType::Float.into(),
|
|
..TensorProto::default()
|
|
}),
|
|
..AttributeProto::default()
|
|
}],
|
|
..NodeProto::default()
|
|
}],
|
|
..GraphProto::default()
|
|
};
|
|
let else_branch = GraphProto {
|
|
output: vec![ValueInfoProto {
|
|
name: "else_out".to_string(),
|
|
r#type: output_type_proto.clone(),
|
|
doc_string: "".to_string(),
|
|
}],
|
|
node: vec![NodeProto {
|
|
op_type: "Constant".to_string(),
|
|
input: vec![],
|
|
output: vec!["else_out".to_string()],
|
|
attribute: vec![AttributeProto {
|
|
name: "value".to_string(),
|
|
r#type: AttributeType::Tensor.into(),
|
|
t: Some(TensorProto {
|
|
dims: vec![y.len() as i64],
|
|
float_data: y.clone(),
|
|
data_type: DataType::Float.into(),
|
|
..TensorProto::default()
|
|
}),
|
|
..AttributeProto::default()
|
|
}],
|
|
..NodeProto::default()
|
|
}],
|
|
..GraphProto::default()
|
|
};
|
|
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "If".to_string(),
|
|
attribute: vec![
|
|
AttributeProto {
|
|
name: "then_branch".to_string(),
|
|
r#type: AttributeType::Graph.into(),
|
|
g: Some(then_branch),
|
|
..AttributeProto::default()
|
|
},
|
|
AttributeProto {
|
|
name: "else_branch".to_string(),
|
|
r#type: AttributeType::Graph.into(),
|
|
g: Some(else_branch),
|
|
..AttributeProto::default()
|
|
},
|
|
],
|
|
input: vec!["cond".to_string()],
|
|
output: vec!["res".to_string()],
|
|
..NodeProto::default()
|
|
}],
|
|
input: vec![],
|
|
output: vec![ValueInfoProto {
|
|
name: "res".to_string(),
|
|
doc_string: "".to_string(),
|
|
r#type: output_type_proto.clone(),
|
|
}],
|
|
..GraphProto::default()
|
|
}));
|
|
|
|
for cond in [1u8, 0] {
|
|
let inputs =
|
|
HashMap::from_iter([("cond".to_string(), Tensor::full(cond, (1,), &Device::Cpu)?)]);
|
|
let outputs = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
|
let expected = if cond != 0 { &x } else { &y };
|
|
let Some(res) = outputs.get("res") else {
|
|
candle::bail!("outputs didn't contain expected key `res`: {outputs:?}");
|
|
};
|
|
assert_eq!(&res.to_vec1::<f32>()?, expected);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn test_pad() -> Result<()> {
|
|
let data = Tensor::from_vec(
|
|
vec![
|
|
1.0, 2.0, 3.0, //
|
|
4.0, 5.0, 6.0, //
|
|
],
|
|
(2, 3),
|
|
&Device::Cpu,
|
|
)?;
|
|
let pads = Tensor::from_vec(vec![0i64, 1, 0, 0], (4,), &Device::Cpu)?;
|
|
let mode = "reflect";
|
|
|
|
let expected = Tensor::from_vec(
|
|
vec![
|
|
2.0, 1.0, 2.0, 3.0, //
|
|
5.0, 4.0, 5.0, 6.0, //
|
|
],
|
|
(2, 4),
|
|
&Device::Cpu,
|
|
)?;
|
|
|
|
let model = create_model_proto_with_graph(Some(GraphProto {
|
|
input: vec![
|
|
ValueInfoProto {
|
|
name: "data".to_string(),
|
|
..ValueInfoProto::default()
|
|
},
|
|
ValueInfoProto {
|
|
name: "pads".to_string(),
|
|
..ValueInfoProto::default()
|
|
},
|
|
],
|
|
output: vec![ValueInfoProto {
|
|
name: "output".to_string(),
|
|
..ValueInfoProto::default()
|
|
}],
|
|
node: vec![NodeProto {
|
|
op_type: "Pad".to_string(),
|
|
input: vec!["data".to_string(), "pads".to_string()],
|
|
output: vec!["output".to_string()],
|
|
attribute: vec![AttributeProto {
|
|
name: "mode".to_string(),
|
|
r#type: AttributeType::String.into(),
|
|
s: mode.as_bytes().to_vec(),
|
|
..AttributeProto::default()
|
|
}],
|
|
..NodeProto::default()
|
|
}],
|
|
..GraphProto::default()
|
|
}));
|
|
|
|
let inputs = HashMap::from_iter([("data".to_string(), data), ("pads".to_string(), pads)]);
|
|
let res = candle_onnx::simple_eval(&model, inputs)?;
|
|
let Some(actual) = res.get("output") else {
|
|
candle::bail!("outputs didn't contain expected key `output`: {res:?}");
|
|
};
|
|
|
|
assert_eq!(actual.to_vec2::<f64>()?, expected.to_vec2::<f64>()?);
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn test_slice() -> Result<()> {
|
|
let model = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Slice".to_string(),
|
|
input: vec![
|
|
"data".to_string(),
|
|
"starts".to_string(),
|
|
"ends".to_string(),
|
|
"axes".to_string(),
|
|
"steps".to_string(),
|
|
],
|
|
output: vec!["result".to_string()],
|
|
..NodeProto::default()
|
|
}],
|
|
input: ["data", "starts", "ends", "axes", "steps"]
|
|
.into_iter()
|
|
.map(|name| ValueInfoProto {
|
|
name: name.to_string(),
|
|
r#type: None,
|
|
doc_string: "".to_string(),
|
|
})
|
|
.collect(),
|
|
output: ["result"]
|
|
.into_iter()
|
|
.map(|name| ValueInfoProto {
|
|
name: name.to_string(),
|
|
r#type: None,
|
|
doc_string: "".to_string(),
|
|
})
|
|
.collect(),
|
|
..GraphProto::default()
|
|
}));
|
|
|
|
/*
|
|
data = [
|
|
[1, 2, 3, 4],
|
|
[5, 6, 7, 8],
|
|
]
|
|
axes = [0, 1]
|
|
starts = [1, 0]
|
|
ends = [2, 3]
|
|
steps = [1, 2]
|
|
result = [
|
|
[5, 7],
|
|
]
|
|
*/
|
|
|
|
let outputs = candle_onnx::simple_eval(
|
|
&model,
|
|
HashMap::from_iter([
|
|
(
|
|
"data".to_string(),
|
|
Tensor::from_vec(vec![1i64, 2, 3, 4, 5, 6, 7, 8], (2, 4), &Device::Cpu)?,
|
|
),
|
|
(
|
|
"starts".to_string(),
|
|
Tensor::from_vec(vec![1i64, 0], (2,), &Device::Cpu)?,
|
|
),
|
|
(
|
|
"ends".to_string(),
|
|
Tensor::from_vec(vec![2i64, 3], (2,), &Device::Cpu)?,
|
|
),
|
|
(
|
|
"axes".to_string(),
|
|
Tensor::from_vec(vec![0i64, 1], (2,), &Device::Cpu)?,
|
|
),
|
|
(
|
|
"steps".to_string(),
|
|
Tensor::from_vec(vec![1i64, 2], (2,), &Device::Cpu)?,
|
|
),
|
|
]),
|
|
)?;
|
|
let actual = outputs.get("result").unwrap().to_vec2::<i64>()?;
|
|
assert_eq!(actual, vec![vec![5i64, 7]]);
|
|
|
|
/*
|
|
data = [
|
|
[1, 2, 3, 4],
|
|
[5, 6, 7, 8],
|
|
]
|
|
starts = [0, 1]
|
|
ends = [-1, 1000]
|
|
result = [
|
|
[2, 3, 4],
|
|
]
|
|
*/
|
|
let model = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "Slice".to_string(),
|
|
input: vec!["data".to_string(), "starts".to_string(), "ends".to_string()],
|
|
output: vec!["result".to_string()],
|
|
..NodeProto::default()
|
|
}],
|
|
input: ["data", "starts", "ends"]
|
|
.into_iter()
|
|
.map(|name| ValueInfoProto {
|
|
name: name.to_string(),
|
|
r#type: None,
|
|
doc_string: "".to_string(),
|
|
})
|
|
.collect(),
|
|
output: ["result"]
|
|
.into_iter()
|
|
.map(|name| ValueInfoProto {
|
|
name: name.to_string(),
|
|
r#type: None,
|
|
doc_string: "".to_string(),
|
|
})
|
|
.collect(),
|
|
..GraphProto::default()
|
|
}));
|
|
let outputs = candle_onnx::simple_eval(
|
|
&model,
|
|
HashMap::from_iter([
|
|
(
|
|
"data".to_string(),
|
|
Tensor::from_vec(vec![1i64, 2, 3, 4, 5, 6, 7, 8], (2, 4), &Device::Cpu)?,
|
|
),
|
|
(
|
|
"starts".to_string(),
|
|
Tensor::from_vec(vec![0i64, 1], (2,), &Device::Cpu)?,
|
|
),
|
|
(
|
|
"ends".to_string(),
|
|
Tensor::from_vec(vec![-1i64, 1000], (2,), &Device::Cpu)?,
|
|
),
|
|
]),
|
|
)?;
|
|
let actual = outputs.get("result").unwrap().to_vec2::<i64>()?;
|
|
assert_eq!(actual, vec![vec![2i64, 3, 4]]);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn test_lstm() -> Result<()> {
|
|
// values generated from pytorch, so at least it's close enough to what pytorch does
|
|
/*
|
|
#!/usr/bin/env python3
|
|
|
|
# torch.nn.LSTM(input_size, hidden_size, num_layers=1, bias=True, batch_first=False, dropout=0.0, bidirectional=False, proj_size=0, device=None, dtype=None)
|
|
|
|
import torch
|
|
|
|
rand_gen = torch.Generator()
|
|
rand_gen.manual_seed(1)
|
|
input_size = 3
|
|
hidden_size = 5
|
|
batch_size = 1
|
|
sequence_length = 4
|
|
number_directions = 1
|
|
rnn = torch.nn.LSTM(input_size,hidden_size)
|
|
weight_ih_l0 = torch.randn(rnn.weight_ih_l0.shape, generator=rand_gen)
|
|
weight_hh_l0 = torch.randn(rnn.weight_hh_l0.shape, generator=rand_gen)
|
|
bias_ih_l0 = torch.randn(rnn.bias_ih_l0.shape, generator=rand_gen)
|
|
bias_hh_l0 = torch.randn(rnn.bias_hh_l0.shape, generator=rand_gen)
|
|
rnn.weight_ih_l0 = torch.nn.Parameter(weight_ih_l0)
|
|
rnn.weight_hh_l0 = torch.nn.Parameter(weight_hh_l0)
|
|
rnn.bias_ih_l0 = torch.nn.Parameter(bias_ih_l0)
|
|
rnn.bias_hh_l0 = torch.nn.Parameter(bias_hh_l0)
|
|
input = torch.randn(sequence_length, batch_size, input_size, generator=rand_gen)
|
|
h0 = torch.randn(number_directions, batch_size, hidden_size, generator=rand_gen)
|
|
c0 = torch.randn(number_directions, batch_size, hidden_size, generator=rand_gen)
|
|
output, (hn, cn) = rnn(input, (h0, c0))
|
|
|
|
def fmt_tensor(t):
|
|
return "Tensor::from_vec::<_, f32>(vec!"+ str(t.flatten().tolist()) + ", (" + "".join([str(n)+"," for n in t.shape])+"), &Device::Cpu)?"
|
|
|
|
print("let input_size = ", input_size, ";")
|
|
print("let hidden_size = ", hidden_size, ";")
|
|
print("let batch_size = ", batch_size, ";")
|
|
print("let sequence_length = ", sequence_length, ";")
|
|
print("let number_directions = ", number_directions, ";")
|
|
print("let weight_ih_l0 = ", fmt_tensor(rnn.weight_ih_l0), ";")
|
|
print("let weight_hh_l0 = ", fmt_tensor(rnn.weight_hh_l0), ";")
|
|
print("let bias_ih_l0 = ", fmt_tensor(rnn.bias_ih_l0), ";")
|
|
print("let bias_hh_l0 = ", fmt_tensor(rnn.bias_hh_l0), ";")
|
|
print("let input = ", fmt_tensor(input), ";")
|
|
print("let h0 = ", fmt_tensor(h0), ";")
|
|
print("let c0 = ", fmt_tensor(c0), ";")
|
|
print("let output = ", fmt_tensor(output), ";")
|
|
print("let hn = ", fmt_tensor(hn), ";")
|
|
print("let cn = ", fmt_tensor(cn), ";")
|
|
*/
|
|
let input_size = 3;
|
|
let hidden_size = 5;
|
|
let batch_size = 1;
|
|
let sequence_length = 4;
|
|
let number_directions = 1;
|
|
let weight_ih_l0 = Tensor::from_vec::<_, f32>(
|
|
vec![
|
|
-1.5255959033966064,
|
|
-0.7502318024635315,
|
|
-0.6539809107780457,
|
|
-1.6094847917556763,
|
|
-0.1001671776175499,
|
|
-0.6091889142990112,
|
|
-0.9797722697257996,
|
|
-1.6090962886810303,
|
|
-0.7121446132659912,
|
|
0.30372199416160583,
|
|
-0.777314305305481,
|
|
-0.25145524740219116,
|
|
-0.22227048873901367,
|
|
1.6871134042739868,
|
|
0.22842517495155334,
|
|
0.46763551235198975,
|
|
-0.6969724297523499,
|
|
-1.1607614755630493,
|
|
0.6995424032211304,
|
|
0.1990816295146942,
|
|
0.8656923770904541,
|
|
0.2444038987159729,
|
|
-0.6629113554954529,
|
|
0.8073082566261292,
|
|
1.1016806364059448,
|
|
-0.1759360432624817,
|
|
-2.2455577850341797,
|
|
-1.4464579820632935,
|
|
0.0611552819609642,
|
|
-0.6177444458007812,
|
|
-0.7980698347091675,
|
|
-0.13162320852279663,
|
|
1.8793457746505737,
|
|
-0.07213178277015686,
|
|
0.15777060389518738,
|
|
-0.7734549045562744,
|
|
0.1990565061569214,
|
|
0.04570277780294418,
|
|
0.15295691788196564,
|
|
-0.47567880153656006,
|
|
-0.11101982742547989,
|
|
0.2927352488040924,
|
|
-0.1578451544046402,
|
|
-0.028787139803171158,
|
|
0.4532545804977417,
|
|
1.1421611309051514,
|
|
0.2486107051372528,
|
|
-1.7754007577896118,
|
|
-0.025502461940050125,
|
|
-1.023330569267273,
|
|
-0.5961851477622986,
|
|
-1.0055307149887085,
|
|
0.42854228615760803,
|
|
1.4760777950286865,
|
|
-1.7868678569793701,
|
|
1.610317587852478,
|
|
-0.703956663608551,
|
|
-0.18526579439640045,
|
|
-0.9962350726127625,
|
|
-0.8312552571296692,
|
|
],
|
|
(20, 3),
|
|
&Device::Cpu,
|
|
)?;
|
|
let weight_hh_l0 = Tensor::from_vec::<_, f32>(
|
|
vec![
|
|
0.4099724292755127,
|
|
0.4084506630897522,
|
|
0.25786539912223816,
|
|
1.095021367073059,
|
|
-0.5064865946769714,
|
|
0.09977540373802185,
|
|
-0.653973400592804,
|
|
0.731693685054779,
|
|
-1.456732988357544,
|
|
1.6089353561401367,
|
|
0.09376997500658035,
|
|
-1.2597490549087524,
|
|
0.25463348627090454,
|
|
-0.5019572973251343,
|
|
-1.041200041770935,
|
|
0.7322672009468079,
|
|
1.3075355291366577,
|
|
-1.1627987623214722,
|
|
0.11963611096143723,
|
|
-0.1631353348493576,
|
|
0.6614453196525574,
|
|
1.1899205446243286,
|
|
0.8165339231491089,
|
|
-0.9135236144065857,
|
|
-0.3538065254688263,
|
|
0.7639270424842834,
|
|
-0.5889506936073303,
|
|
-0.7635973691940308,
|
|
1.3352056741714478,
|
|
0.6042736172676086,
|
|
-0.10344208031892776,
|
|
-0.15121692419052124,
|
|
1.2465683221817017,
|
|
0.505721390247345,
|
|
0.9505112171173096,
|
|
1.2966482639312744,
|
|
0.873796284198761,
|
|
-0.5602594017982483,
|
|
1.2857844829559326,
|
|
0.8168238401412964,
|
|
-1.464799404144287,
|
|
-1.2629283666610718,
|
|
1.122018814086914,
|
|
1.5663341283798218,
|
|
2.558138370513916,
|
|
-0.23336388170719147,
|
|
-0.013472129590809345,
|
|
1.8606348037719727,
|
|
1.549620509147644,
|
|
0.34762924909591675,
|
|
0.09300802648067474,
|
|
0.6147403120994568,
|
|
0.7123645544052124,
|
|
-1.7765072584152222,
|
|
0.3538645803928375,
|
|
1.1996132135391235,
|
|
-0.7122589349746704,
|
|
-0.620034396648407,
|
|
-0.22813494503498077,
|
|
-0.7892746329307556,
|
|
-1.6111117601394653,
|
|
-1.8716129064559937,
|
|
0.5430836081504822,
|
|
0.6606786251068115,
|
|
0.270527720451355,
|
|
0.5596919655799866,
|
|
-0.31839630007743835,
|
|
1.5117206573486328,
|
|
-1.363267183303833,
|
|
-0.9832196235656738,
|
|
1.5112667083740234,
|
|
0.6418707370758057,
|
|
-0.7474458813667297,
|
|
-0.923438549041748,
|
|
0.5733984112739563,
|
|
-0.10929951071739197,
|
|
0.5181121230125427,
|
|
0.10653535276651382,
|
|
0.26924076676368713,
|
|
1.3247679471969604,
|
|
0.037456899881362915,
|
|
-0.6378393173217773,
|
|
-0.8147554397583008,
|
|
-0.6895065307617188,
|
|
0.8436542749404907,
|
|
1.1657012701034546,
|
|
0.5269321799278259,
|
|
1.6192532777786255,
|
|
-0.963976263999939,
|
|
0.14152038097381592,
|
|
-0.1636609584093094,
|
|
-0.3582225739955902,
|
|
1.7222793102264404,
|
|
-0.3035756051540375,
|
|
0.23887419700622559,
|
|
1.3440011739730835,
|
|
0.1032256931066513,
|
|
1.1003541946411133,
|
|
-0.3416801989078522,
|
|
0.947338879108429,
|
|
],
|
|
(20, 5),
|
|
&Device::Cpu,
|
|
)?;
|
|
let bias_ih_l0 = Tensor::from_vec::<_, f32>(
|
|
vec![
|
|
-0.568515956401825,
|
|
0.8375961780548096,
|
|
1.783660650253296,
|
|
-0.1954246610403061,
|
|
0.235193133354187,
|
|
1.9142433404922485,
|
|
1.8364111185073853,
|
|
1.324532389640808,
|
|
-0.07051458209753036,
|
|
0.34697940945625305,
|
|
-0.653679609298706,
|
|
1.5586202144622803,
|
|
0.2185661494731903,
|
|
-0.5743072628974915,
|
|
1.4571250677108765,
|
|
1.7709556818008423,
|
|
-2.0172998905181885,
|
|
0.42350319027900696,
|
|
0.5730220079421997,
|
|
-1.7962429523468018,
|
|
],
|
|
(20,),
|
|
&Device::Cpu,
|
|
)?;
|
|
let bias_hh_l0 = Tensor::from_vec::<_, f32>(
|
|
vec![
|
|
1.2470403909683228,
|
|
1.2738511562347412,
|
|
0.3909492492675781,
|
|
0.387210488319397,
|
|
0.14440394937992096,
|
|
0.7771684527397156,
|
|
-2.3381125926971436,
|
|
-0.829120397567749,
|
|
1.1661391258239746,
|
|
1.4786574840545654,
|
|
0.26760873198509216,
|
|
0.7561198472976685,
|
|
-0.5873361229896545,
|
|
-2.061920642852783,
|
|
0.4304734766483307,
|
|
0.3376566171646118,
|
|
-0.3437853455543518,
|
|
-0.6172260642051697,
|
|
1.2529692649841309,
|
|
-0.05141742154955864,
|
|
],
|
|
(20,),
|
|
&Device::Cpu,
|
|
)?;
|
|
let input = Tensor::from_vec::<_, f32>(
|
|
vec![
|
|
0.6472128033638,
|
|
-0.04116716980934143,
|
|
-0.17749308049678802,
|
|
-0.500039279460907,
|
|
0.8672749400138855,
|
|
-0.27319222688674927,
|
|
-0.4607681334018707,
|
|
-0.0990937128663063,
|
|
0.47284480929374695,
|
|
1.0049484968185425,
|
|
-0.2871420383453369,
|
|
-1.1618621349334717,
|
|
],
|
|
(4, 1, 3),
|
|
&Device::Cpu,
|
|
)?;
|
|
let h0 = Tensor::from_vec::<_, f32>(
|
|
vec![
|
|
0.02758178487420082,
|
|
0.5652382373809814,
|
|
-0.011487378738820553,
|
|
0.6706400513648987,
|
|
-0.4929250478744507,
|
|
],
|
|
(1, 1, 5),
|
|
&Device::Cpu,
|
|
)?;
|
|
let c0 = Tensor::from_vec::<_, f32>(
|
|
vec![
|
|
1.505028486251831,
|
|
-2.32635498046875,
|
|
1.6168899536132812,
|
|
-0.9026237726211548,
|
|
0.17366823554039001,
|
|
],
|
|
(1, 1, 5),
|
|
&Device::Cpu,
|
|
)?;
|
|
let output = Tensor::from_vec::<_, f32>(
|
|
vec![
|
|
0.5956016778945923,
|
|
-0.01723279245197773,
|
|
0.11035571992397308,
|
|
-0.49323174357414246,
|
|
0.047632161527872086,
|
|
0.6358451843261719,
|
|
0.040328118950128555,
|
|
-0.3788611590862274,
|
|
-0.7464339733123779,
|
|
0.20080909132957458,
|
|
0.5840265154838562,
|
|
0.1453288197517395,
|
|
-0.7345298528671265,
|
|
-0.5214304327964783,
|
|
0.21903817355632782,
|
|
0.7420451641082764,
|
|
0.31943878531455994,
|
|
-0.04726646468043327,
|
|
-0.2823849618434906,
|
|
0.2713133990764618,
|
|
],
|
|
(4, 1, 5),
|
|
&Device::Cpu,
|
|
)?;
|
|
let hn = Tensor::from_vec::<_, f32>(
|
|
vec![
|
|
0.7420451641082764,
|
|
0.31943878531455994,
|
|
-0.04726646468043327,
|
|
-0.2823849618434906,
|
|
0.2713133990764618,
|
|
],
|
|
(1, 1, 5),
|
|
&Device::Cpu,
|
|
)?;
|
|
let cn = Tensor::from_vec::<_, f32>(
|
|
vec![
|
|
0.9630558490753174,
|
|
1.0033069849014282,
|
|
-1.754899024963379,
|
|
-1.5967122316360474,
|
|
0.8252924680709839,
|
|
],
|
|
(1, 1, 5),
|
|
&Device::Cpu,
|
|
)?;
|
|
// end of generated values
|
|
|
|
let model = create_model_proto_with_graph(Some(GraphProto {
|
|
node: vec![NodeProto {
|
|
op_type: "LSTM".to_string(),
|
|
name: "LSTM_test".to_string(),
|
|
attribute: vec![AttributeProto {
|
|
name: "hidden_size".to_string(),
|
|
r#type: AttributeType::Int.into(),
|
|
i: hidden_size as i64,
|
|
..AttributeProto::default()
|
|
}],
|
|
input: vec![
|
|
"input".to_string(),
|
|
"w".to_string(),
|
|
"r".to_string(),
|
|
"b".to_string(), // b
|
|
"".to_string(), // seq_lens
|
|
"h".to_string(),
|
|
"c".to_string(),
|
|
],
|
|
output: vec!["output".to_string(), "hn".to_string(), "cn".to_string()],
|
|
..NodeProto::default()
|
|
}],
|
|
input: ["input", "w", "r", "b", "h", "c"]
|
|
.into_iter()
|
|
.map(|name| ValueInfoProto {
|
|
name: name.to_string(),
|
|
..ValueInfoProto::default()
|
|
})
|
|
.collect(),
|
|
output: ["output", "hn", "cn"]
|
|
.into_iter()
|
|
.map(|name| ValueInfoProto {
|
|
name: name.to_string(),
|
|
..ValueInfoProto::default()
|
|
})
|
|
.collect(),
|
|
..GraphProto::default()
|
|
}));
|
|
// pytorch stores weight and bias as [ifco] but we want it as [iofc]
|
|
// so we need to re-arrange the tensors a bit
|
|
let idx_iofc = {
|
|
let stride = hidden_size as i64;
|
|
let dev = weight_ih_l0.device();
|
|
let idx_i = Tensor::arange(0 * stride, 1 * stride, dev)?;
|
|
let idx_f = Tensor::arange(1 * stride, 2 * stride, dev)?;
|
|
let idx_g = Tensor::arange(2 * stride, 3 * stride, dev)?;
|
|
let idx_o = Tensor::arange(3 * stride, 4 * stride, dev)?;
|
|
|
|
Tensor::cat(&[&idx_i, &idx_o, &idx_f, &idx_g], 0)?
|
|
};
|
|
let w = weight_ih_l0.index_select(&idx_iofc, 0)?;
|
|
let w = w.reshape((number_directions, 4 * hidden_size, input_size))?;
|
|
let r = weight_hh_l0.index_select(&idx_iofc, 0)?;
|
|
let r = r.reshape((number_directions, 4 * hidden_size, hidden_size))?;
|
|
let wb = bias_ih_l0.index_select(&idx_iofc, 0)?;
|
|
let rb = bias_hh_l0.index_select(&idx_iofc, 0)?;
|
|
let b = Tensor::cat(&[wb, rb], 0)?.reshape((number_directions, 8 * hidden_size))?;
|
|
let output = output.reshape((sequence_length, number_directions, batch_size, hidden_size))?;
|
|
let result = simple_eval(
|
|
&model,
|
|
HashMap::from_iter([
|
|
("input".to_string(), input),
|
|
("w".to_string(), w),
|
|
("r".to_string(), r),
|
|
("b".to_string(), b),
|
|
("h".to_string(), h0),
|
|
("c".to_string(), c0),
|
|
]),
|
|
)?;
|
|
let actual_output = result.get("output").unwrap();
|
|
assert_eq!(output.dims(), actual_output.dims());
|
|
let actual_hn = result.get("hn").unwrap();
|
|
assert_eq!(hn.dims(), actual_hn.dims());
|
|
let actual_cn = result.get("cn").unwrap();
|
|
assert_eq!(cn.dims(), actual_cn.dims());
|
|
let diff_close_enough = |a: &Tensor, b| -> Result<_> {
|
|
let diffs = a.sub(b)?.flatten_all()?.to_vec1::<f32>()?;
|
|
Ok(diffs.iter().all(|f| f.abs() < 0.0001))
|
|
};
|
|
assert!(
|
|
diff_close_enough(&output, &actual_output)?,
|
|
"output did not match expected\n{actual_output}\n{output}",
|
|
);
|
|
assert!(
|
|
diff_close_enough(&hn, &actual_hn)?,
|
|
"hn did not match expected\n{actual_hn}\n{hn}",
|
|
);
|
|
assert!(
|
|
diff_close_enough(&cn, &actual_cn)?,
|
|
"cn did not match expected\n{actual_cn}\n{cn}",
|
|
);
|
|
|
|
Ok(())
|
|
}
|