mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 02:38:10 +00:00
221 lines
7.2 KiB
Rust
221 lines
7.2 KiB
Rust
// An implementation of LLaMA https://github.com/facebookresearch/llama
|
|
//
|
|
// This is based on nanoGPT in a similar way to:
|
|
// https://github.com/Lightning-AI/lit-llama/blob/main/lit_llama/model.py
|
|
//
|
|
// The tokenizer config can be retrieved from:
|
|
// https://huggingface.co/hf-internal-testing/llama-tokenizer/raw/main/tokenizer.json
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
use anyhow::{Error as E, Result};
|
|
use clap::Parser;
|
|
|
|
use candle::{DType, Tensor};
|
|
use candle_nn::VarBuilder;
|
|
use candle_transformers::generation::LogitsProcessor;
|
|
use hf_hub::api::sync::Api;
|
|
use std::io::Write;
|
|
|
|
mod model;
|
|
use model::{Config, Llama, LlamaConfig};
|
|
|
|
const EOS_TOKEN: &str = "</s>";
|
|
const MAX_SEQ_LEN: usize = 4096;
|
|
const DEFAULT_PROMPT: &str = "My favorite theorem is ";
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// Use npy instead of safetensors
|
|
#[arg(long)]
|
|
npy: Option<String>,
|
|
|
|
/// The temperature used to generate samples.
|
|
#[arg(long)]
|
|
temperature: Option<f64>,
|
|
|
|
/// The seed to use when generating random samples.
|
|
#[arg(long, default_value_t = 299792458)]
|
|
seed: u64,
|
|
|
|
/// The length of the sample to generate (in tokens).
|
|
#[arg(long, default_value_t = 100)]
|
|
sample_len: usize,
|
|
|
|
/// Disable the key-value cache.
|
|
#[arg(long)]
|
|
no_kv_cache: bool,
|
|
|
|
/// The initial prompt.
|
|
#[arg(long)]
|
|
prompt: Option<String>,
|
|
|
|
/// Use f32 computations rather than f16.
|
|
#[arg(long)]
|
|
use_f32: bool,
|
|
|
|
/// Enable tracing (generates a trace-timestamp.json file).
|
|
#[arg(long)]
|
|
tracing: bool,
|
|
|
|
#[arg(long)]
|
|
model_id: Option<String>,
|
|
|
|
#[arg(long)]
|
|
v1: bool,
|
|
|
|
#[arg(long)]
|
|
use_flash_attn: bool,
|
|
|
|
/// The folder name that contains safetensor weights and json files
|
|
/// (same structure as huggingface online)
|
|
#[arg(long)]
|
|
local_weights: Option<String>,
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
use tokenizers::Tokenizer;
|
|
use tracing_chrome::ChromeLayerBuilder;
|
|
use tracing_subscriber::prelude::*;
|
|
|
|
let args = Args::parse();
|
|
let _guard = if args.tracing {
|
|
println!("tracing...");
|
|
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
|
tracing_subscriber::registry().with(chrome_layer).init();
|
|
Some(guard)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let device = candle_examples::device(args.cpu)?;
|
|
let dtype = if args.use_f32 { DType::F32 } else { DType::F16 };
|
|
let (llama, tokenizer_filename, cache) = match args.npy {
|
|
Some(filename) => {
|
|
let config = if args.v1 {
|
|
Config::config_7b_v1(args.use_flash_attn)
|
|
} else {
|
|
Config::config_7b_v2(args.use_flash_attn)
|
|
};
|
|
let cache = model::Cache::new(!args.no_kv_cache, dtype, &config, &device)?;
|
|
let vb = VarBuilder::from_npz(filename, dtype, &device)?;
|
|
let tokenizer = std::path::PathBuf::from("llama-tokenizer.json");
|
|
(Llama::load(vb, &cache, &config)?, tokenizer, cache)
|
|
}
|
|
None => {
|
|
let api = Api::new()?;
|
|
let model_id = args.model_id.unwrap_or_else(|| {
|
|
if args.v1 {
|
|
"Narsil/amall-7b".to_string()
|
|
} else {
|
|
"meta-llama/Llama-2-7b-hf".to_string()
|
|
}
|
|
});
|
|
println!("loading the model weights from {model_id}");
|
|
let api = api.model(model_id);
|
|
|
|
let tokenizer_filename = match &args.local_weights {
|
|
Some(path) => (path.to_owned() + "tokenizer.json").into(),
|
|
_ => api.get("tokenizer.json")?,
|
|
};
|
|
|
|
let config_filename = match &args.local_weights {
|
|
Some(path) => (path.to_owned() + "config.json").into(),
|
|
_ => api.get("config.json")?,
|
|
};
|
|
let config: LlamaConfig = serde_json::from_slice(&std::fs::read(config_filename)?)?;
|
|
let config = config.into_config(args.use_flash_attn);
|
|
|
|
let mut filenames = vec![];
|
|
for rfilename in [
|
|
"model-00001-of-00002.safetensors",
|
|
"model-00002-of-00002.safetensors",
|
|
] {
|
|
match &args.local_weights {
|
|
Some(path) => {
|
|
filenames.push((path.to_owned() + rfilename).into());
|
|
}
|
|
_ => {
|
|
let filename = api.get(rfilename)?;
|
|
filenames.push(filename);
|
|
}
|
|
};
|
|
}
|
|
|
|
println!("building the model");
|
|
let handles = filenames
|
|
.iter()
|
|
.map(|f| Ok(unsafe { candle::safetensors::MmapedFile::new(f.as_path())? }))
|
|
.collect::<Result<Vec<_>>>()?;
|
|
let tensors: Vec<_> = handles
|
|
.iter()
|
|
.map(|h| Ok(h.deserialize()?))
|
|
.collect::<Result<Vec<_>>>()?;
|
|
let cache = model::Cache::new(!args.no_kv_cache, dtype, &config, &device)?;
|
|
|
|
let vb = VarBuilder::from_safetensors(tensors, dtype, &device);
|
|
(Llama::load(vb, &cache, &config)?, tokenizer_filename, cache)
|
|
}
|
|
};
|
|
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
|
let eos_token_id = tokenizer.token_to_id(EOS_TOKEN);
|
|
let prompt = args.prompt.as_ref().map_or(DEFAULT_PROMPT, |p| p.as_str());
|
|
let mut tokens = tokenizer
|
|
.encode(prompt, true)
|
|
.map_err(E::msg)?
|
|
.get_ids()
|
|
.to_vec();
|
|
|
|
println!("starting the inference loop");
|
|
print!("{prompt}");
|
|
let mut logits_processor = LogitsProcessor::new(args.seed, args.temperature);
|
|
let start_gen = std::time::Instant::now();
|
|
let mut index_pos = 0;
|
|
let mut token_generated = 0;
|
|
for index in 0..args.sample_len {
|
|
let context_size = if cache.use_kv_cache && index > 0 {
|
|
1
|
|
} else {
|
|
tokens.len()
|
|
};
|
|
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
|
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
|
|
let logits = llama.forward(&input, index_pos)?;
|
|
let logits = logits.squeeze(0)?;
|
|
index_pos += ctxt.len();
|
|
|
|
let next_token = logits_processor.sample(&logits)?;
|
|
token_generated += 1;
|
|
tokens.push(next_token);
|
|
|
|
// Extracting the last token as a string is complicated, here we just apply some simple
|
|
// heuristics as it seems to work well enough for this example. See the following for more
|
|
// details:
|
|
// https://github.com/huggingface/tokenizers/issues/1141#issuecomment-1562644141
|
|
if let Some(text) = tokenizer.id_to_token(next_token) {
|
|
let text = text.replace('▁', " ").replace("<0x0A>", "\n");
|
|
print!("{text}");
|
|
std::io::stdout().flush()?;
|
|
}
|
|
if Some(next_token) == eos_token_id {
|
|
break;
|
|
}
|
|
}
|
|
let dt = start_gen.elapsed();
|
|
println!(
|
|
"\n\n{} tokens generated ({} token/s)\n",
|
|
token_generated,
|
|
token_generated as f64 / dt.as_secs_f64(),
|
|
);
|
|
Ok(())
|
|
}
|