mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00

* Fixes for the yolo-v8 layout. * Bugfixes. * Another silly bugfix. * Remove the hf-hub dependency. * Remove the transformers dependency.
781 lines
23 KiB
Rust
781 lines
23 KiB
Rust
#![allow(dead_code)]
|
|
|
|
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
mod coco_classes;
|
|
|
|
use candle::{DType, Device, IndexOp, Result, Tensor, D};
|
|
use candle_nn::{
|
|
batch_norm, conv2d, conv2d_no_bias, BatchNorm, Conv2d, Conv2dConfig, Module, VarBuilder,
|
|
};
|
|
use clap::Parser;
|
|
use image::{DynamicImage, ImageBuffer};
|
|
|
|
const CONFIDENCE_THRESHOLD: f32 = 0.5;
|
|
const NMS_THRESHOLD: f32 = 0.4;
|
|
|
|
// Model architecture from https://github.com/ultralytics/ultralytics/issues/189
|
|
// https://github.com/tinygrad/tinygrad/blob/master/examples/yolov8.py
|
|
|
|
#[derive(Clone, Copy, PartialEq, Debug)]
|
|
struct Multiples {
|
|
depth: f64,
|
|
width: f64,
|
|
ratio: f64,
|
|
}
|
|
|
|
impl Multiples {
|
|
fn n() -> Self {
|
|
Self {
|
|
depth: 0.33,
|
|
width: 0.25,
|
|
ratio: 2.0,
|
|
}
|
|
}
|
|
fn s() -> Self {
|
|
Self {
|
|
depth: 0.33,
|
|
width: 0.50,
|
|
ratio: 2.0,
|
|
}
|
|
}
|
|
fn m() -> Self {
|
|
Self {
|
|
depth: 0.67,
|
|
width: 0.75,
|
|
ratio: 1.5,
|
|
}
|
|
}
|
|
fn l() -> Self {
|
|
Self {
|
|
depth: 1.00,
|
|
width: 1.00,
|
|
ratio: 1.0,
|
|
}
|
|
}
|
|
fn x() -> Self {
|
|
Self {
|
|
depth: 1.00,
|
|
width: 1.25,
|
|
ratio: 1.0,
|
|
}
|
|
}
|
|
|
|
fn filters(&self) -> (usize, usize, usize) {
|
|
let f1 = (256. * self.width) as usize;
|
|
let f2 = (512. * self.width) as usize;
|
|
let f3 = (512. * self.width * self.ratio) as usize;
|
|
(f1, f2, f3)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct Upsample {
|
|
scale_factor: usize,
|
|
}
|
|
|
|
impl Upsample {
|
|
fn new(scale_factor: usize) -> Result<Self> {
|
|
Ok(Upsample { scale_factor })
|
|
}
|
|
}
|
|
|
|
impl Module for Upsample {
|
|
fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> {
|
|
let (_b_size, _channels, h, w) = xs.dims4()?;
|
|
xs.upsample_nearest2d(self.scale_factor * h, self.scale_factor * w)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct ConvBlock {
|
|
conv: Conv2d,
|
|
bn: BatchNorm,
|
|
}
|
|
|
|
impl ConvBlock {
|
|
fn load(
|
|
vb: VarBuilder,
|
|
c1: usize,
|
|
c2: usize,
|
|
k: usize,
|
|
stride: usize,
|
|
padding: Option<usize>,
|
|
) -> Result<Self> {
|
|
let padding = padding.unwrap_or(k / 2);
|
|
let cfg = Conv2dConfig { padding, stride };
|
|
let conv = conv2d_no_bias(c1, c2, k, cfg, vb.pp("conv"))?;
|
|
let bn = batch_norm(c2, 1e-3, vb.pp("bn"))?;
|
|
Ok(Self { conv, bn })
|
|
}
|
|
}
|
|
|
|
impl Module for ConvBlock {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let xs = self.conv.forward(xs)?;
|
|
let xs = self.bn.forward(&xs)?;
|
|
candle_nn::ops::silu(&xs)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct Bottleneck {
|
|
cv1: ConvBlock,
|
|
cv2: ConvBlock,
|
|
residual: bool,
|
|
}
|
|
|
|
impl Bottleneck {
|
|
fn load(vb: VarBuilder, c1: usize, c2: usize, shortcut: bool) -> Result<Self> {
|
|
let channel_factor = 1.;
|
|
let c_ = (c2 as f64 * channel_factor) as usize;
|
|
let cv1 = ConvBlock::load(vb.pp("cv1"), c1, c_, 3, 1, None)?;
|
|
let cv2 = ConvBlock::load(vb.pp("cv2"), c_, c2, 3, 1, None)?;
|
|
let residual = c1 == c2 && shortcut;
|
|
Ok(Self { cv1, cv2, residual })
|
|
}
|
|
}
|
|
|
|
impl Module for Bottleneck {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let ys = self.cv2.forward(&self.cv1.forward(xs)?)?;
|
|
if self.residual {
|
|
xs + ys
|
|
} else {
|
|
Ok(ys)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct C2f {
|
|
cv1: ConvBlock,
|
|
cv2: ConvBlock,
|
|
bottleneck: Vec<Bottleneck>,
|
|
c: usize,
|
|
}
|
|
|
|
impl C2f {
|
|
fn load(vb: VarBuilder, c1: usize, c2: usize, n: usize, shortcut: bool) -> Result<Self> {
|
|
let c = (c2 as f64 * 0.5) as usize;
|
|
let cv1 = ConvBlock::load(vb.pp("cv1"), c1, 2 * c, 1, 1, None)?;
|
|
let cv2 = ConvBlock::load(vb.pp("cv2"), (2 + n) * c, c2, 1, 1, None)?;
|
|
let mut bottleneck = Vec::with_capacity(n);
|
|
for idx in 0..n {
|
|
let b = Bottleneck::load(vb.pp(&format!("bottleneck.{idx}")), c, c, shortcut)?;
|
|
bottleneck.push(b)
|
|
}
|
|
Ok(Self {
|
|
cv1,
|
|
cv2,
|
|
bottleneck,
|
|
c,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Module for C2f {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let ys = self.cv1.forward(xs)?;
|
|
let mut ys = ys.chunk(2, 1)?;
|
|
for m in self.bottleneck.iter() {
|
|
ys.push(m.forward(ys.last().unwrap())?)
|
|
}
|
|
let zs = Tensor::cat(ys.as_slice(), 1)?;
|
|
self.cv2.forward(&zs)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct Sppf {
|
|
cv1: ConvBlock,
|
|
cv2: ConvBlock,
|
|
k: usize,
|
|
}
|
|
|
|
impl Sppf {
|
|
fn load(vb: VarBuilder, c1: usize, c2: usize, k: usize) -> Result<Self> {
|
|
let c_ = c1 / 2;
|
|
let cv1 = ConvBlock::load(vb.pp("cv1"), c1, c_, 1, 1, None)?;
|
|
let cv2 = ConvBlock::load(vb.pp("cv2"), c_ * 4, c2, 1, 1, None)?;
|
|
Ok(Self { cv1, cv2, k })
|
|
}
|
|
}
|
|
|
|
impl Module for Sppf {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let (_, _, _, _) = xs.dims4()?;
|
|
let xs = self.cv1.forward(xs)?;
|
|
let xs2 = xs
|
|
.pad_with_zeros(2, self.k / 2, self.k / 2)?
|
|
.pad_with_zeros(3, self.k / 2, self.k / 2)?
|
|
.max_pool2d((self.k, self.k), (1, 1))?;
|
|
let xs3 = xs2
|
|
.pad_with_zeros(2, self.k / 2, self.k / 2)?
|
|
.pad_with_zeros(3, self.k / 2, self.k / 2)?
|
|
.max_pool2d((self.k, self.k), (1, 1))?;
|
|
let xs4 = xs3
|
|
.pad_with_zeros(2, self.k / 2, self.k / 2)?
|
|
.pad_with_zeros(3, self.k / 2, self.k / 2)?
|
|
.max_pool2d((self.k, self.k), (1, 1))?;
|
|
self.cv2.forward(&Tensor::cat(&[&xs, &xs2, &xs3, &xs4], 1)?)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct Dfl {
|
|
conv: Conv2d,
|
|
num_classes: usize,
|
|
}
|
|
|
|
impl Dfl {
|
|
fn load(vb: VarBuilder, num_classes: usize) -> Result<Self> {
|
|
let conv = conv2d_no_bias(num_classes, 1, 1, Default::default(), vb.pp("conv"))?;
|
|
Ok(Self { conv, num_classes })
|
|
}
|
|
}
|
|
|
|
impl Module for Dfl {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let (b_sz, _channels, anchors) = xs.dims3()?;
|
|
let xs = xs
|
|
.reshape((b_sz, 4, self.num_classes, anchors))?
|
|
.transpose(2, 1)?;
|
|
let xs = candle_nn::ops::softmax(&xs, 1)?;
|
|
self.conv.forward(&xs)?.reshape((b_sz, 4, anchors))
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct DarkNet {
|
|
b1_0: ConvBlock,
|
|
b1_1: ConvBlock,
|
|
b2_0: C2f,
|
|
b2_1: ConvBlock,
|
|
b2_2: C2f,
|
|
b3_0: ConvBlock,
|
|
b3_1: C2f,
|
|
b4_0: ConvBlock,
|
|
b4_1: C2f,
|
|
b5: Sppf,
|
|
}
|
|
|
|
impl DarkNet {
|
|
fn load(vb: VarBuilder, m: Multiples) -> Result<Self> {
|
|
let (w, r, d) = (m.width, m.ratio, m.depth);
|
|
let b1_0 = ConvBlock::load(vb.pp("b1.0"), 3, (64. * w) as usize, 3, 2, Some(1))?;
|
|
let b1_1 = ConvBlock::load(
|
|
vb.pp("b1.1"),
|
|
(64. * w) as usize,
|
|
(128. * w) as usize,
|
|
3,
|
|
2,
|
|
Some(1),
|
|
)?;
|
|
let b2_0 = C2f::load(
|
|
vb.pp("b2.0"),
|
|
(128. * w) as usize,
|
|
(128. * w) as usize,
|
|
(3. * d).round() as usize,
|
|
true,
|
|
)?;
|
|
let b2_1 = ConvBlock::load(
|
|
vb.pp("b2.1"),
|
|
(128. * w) as usize,
|
|
(256. * w) as usize,
|
|
3,
|
|
2,
|
|
Some(1),
|
|
)?;
|
|
let b2_2 = C2f::load(
|
|
vb.pp("b2.2"),
|
|
(256. * w) as usize,
|
|
(256. * w) as usize,
|
|
(6. * d).round() as usize,
|
|
true,
|
|
)?;
|
|
let b3_0 = ConvBlock::load(
|
|
vb.pp("b3.0"),
|
|
(256. * w) as usize,
|
|
(512. * w) as usize,
|
|
3,
|
|
2,
|
|
Some(1),
|
|
)?;
|
|
let b3_1 = C2f::load(
|
|
vb.pp("b3.1"),
|
|
(512. * w) as usize,
|
|
(512. * w) as usize,
|
|
(6. * d).round() as usize,
|
|
true,
|
|
)?;
|
|
let b4_0 = ConvBlock::load(
|
|
vb.pp("b4.0"),
|
|
(512. * w) as usize,
|
|
(512. * w * r) as usize,
|
|
3,
|
|
2,
|
|
Some(1),
|
|
)?;
|
|
let b4_1 = C2f::load(
|
|
vb.pp("b4.1"),
|
|
(512. * w * r) as usize,
|
|
(512. * w * r) as usize,
|
|
(3. * d).round() as usize,
|
|
true,
|
|
)?;
|
|
let b5 = Sppf::load(
|
|
vb.pp("b5.0"),
|
|
(512. * w * r) as usize,
|
|
(512. * w * r) as usize,
|
|
5,
|
|
)?;
|
|
Ok(Self {
|
|
b1_0,
|
|
b1_1,
|
|
b2_0,
|
|
b2_1,
|
|
b2_2,
|
|
b3_0,
|
|
b3_1,
|
|
b4_0,
|
|
b4_1,
|
|
b5,
|
|
})
|
|
}
|
|
|
|
fn forward(&self, xs: &Tensor) -> Result<(Tensor, Tensor, Tensor)> {
|
|
let x1 = self.b1_1.forward(&self.b1_0.forward(xs)?)?;
|
|
let x2 = self
|
|
.b2_2
|
|
.forward(&self.b2_1.forward(&self.b2_0.forward(&x1)?)?)?;
|
|
let x3 = self.b3_1.forward(&self.b3_0.forward(&x2)?)?;
|
|
let x4 = self.b4_1.forward(&self.b4_0.forward(&x3)?)?;
|
|
let x5 = self.b5.forward(&x4)?;
|
|
Ok((x2, x3, x5))
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct YoloV8Neck {
|
|
up: Upsample,
|
|
n1: C2f,
|
|
n2: C2f,
|
|
n3: ConvBlock,
|
|
n4: C2f,
|
|
n5: ConvBlock,
|
|
n6: C2f,
|
|
}
|
|
|
|
impl YoloV8Neck {
|
|
fn load(vb: VarBuilder, m: Multiples) -> Result<Self> {
|
|
let up = Upsample::new(2)?;
|
|
let (w, r, d) = (m.width, m.ratio, m.depth);
|
|
let n = (3. * d).round() as usize;
|
|
let n1 = C2f::load(
|
|
vb.pp("n1"),
|
|
(512. * w * (1. + r)) as usize,
|
|
(512. * w) as usize,
|
|
n,
|
|
false,
|
|
)?;
|
|
let n2 = C2f::load(
|
|
vb.pp("n2"),
|
|
(768. * w) as usize,
|
|
(256. * w) as usize,
|
|
n,
|
|
false,
|
|
)?;
|
|
let n3 = ConvBlock::load(
|
|
vb.pp("n3"),
|
|
(256. * w) as usize,
|
|
(256. * w) as usize,
|
|
3,
|
|
2,
|
|
Some(1),
|
|
)?;
|
|
let n4 = C2f::load(
|
|
vb.pp("n4"),
|
|
(768. * w) as usize,
|
|
(512. * w) as usize,
|
|
n,
|
|
false,
|
|
)?;
|
|
let n5 = ConvBlock::load(
|
|
vb.pp("n5"),
|
|
(512. * w) as usize,
|
|
(512. * w) as usize,
|
|
3,
|
|
2,
|
|
Some(1),
|
|
)?;
|
|
let n6 = C2f::load(
|
|
vb.pp("n6"),
|
|
(512. * w * (1. + r)) as usize,
|
|
(512. * w * r) as usize,
|
|
n,
|
|
false,
|
|
)?;
|
|
Ok(Self {
|
|
up,
|
|
n1,
|
|
n2,
|
|
n3,
|
|
n4,
|
|
n5,
|
|
n6,
|
|
})
|
|
}
|
|
|
|
fn forward(&self, p3: &Tensor, p4: &Tensor, p5: &Tensor) -> Result<(Tensor, Tensor, Tensor)> {
|
|
let x = self
|
|
.n1
|
|
.forward(&Tensor::cat(&[&self.up.forward(p5)?, p4], 1)?)?;
|
|
let head_1 = self
|
|
.n2
|
|
.forward(&Tensor::cat(&[&self.up.forward(&x)?, p3], 1)?)?;
|
|
let head_2 = self
|
|
.n4
|
|
.forward(&Tensor::cat(&[&self.n3.forward(&head_1)?, &x], 1)?)?;
|
|
let head_3 = self
|
|
.n6
|
|
.forward(&Tensor::cat(&[&self.n5.forward(&head_2)?, p5], 1)?)?;
|
|
Ok((head_1, head_2, head_3))
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct DetectionHead {
|
|
dfl: Dfl,
|
|
cv2: [(ConvBlock, ConvBlock, Conv2d); 3],
|
|
cv3: [(ConvBlock, ConvBlock, Conv2d); 3],
|
|
ch: usize,
|
|
no: usize,
|
|
}
|
|
|
|
fn make_anchors(
|
|
xs0: &Tensor,
|
|
xs1: &Tensor,
|
|
xs2: &Tensor,
|
|
(s0, s1, s2): (usize, usize, usize),
|
|
grid_cell_offset: f64,
|
|
) -> Result<(Tensor, Tensor)> {
|
|
let dev = xs0.device();
|
|
let mut anchor_points = vec![];
|
|
let mut stride_tensor = vec![];
|
|
for (xs, stride) in [(xs0, s0), (xs1, s1), (xs2, s2)] {
|
|
// xs is only used to extract the h and w dimensions.
|
|
let (_, _, h, w) = xs.dims4()?;
|
|
let sx = (Tensor::arange(0, w as u32, dev)?.to_dtype(DType::F32)? + grid_cell_offset)?;
|
|
let sy = (Tensor::arange(0, h as u32, dev)?.to_dtype(DType::F32)? + grid_cell_offset)?;
|
|
let sx = sx
|
|
.reshape((1, sx.elem_count()))?
|
|
.repeat((h, 1))?
|
|
.flatten_all()?;
|
|
let sy = sy
|
|
.reshape((sy.elem_count(), 1))?
|
|
.repeat((1, w))?
|
|
.flatten_all()?;
|
|
anchor_points.push(Tensor::stack(&[&sx, &sy], D::Minus1)?);
|
|
stride_tensor.push((Tensor::ones(h * w, DType::F32, dev)? * stride as f64)?);
|
|
}
|
|
let anchor_points = Tensor::cat(anchor_points.as_slice(), 0)?;
|
|
let stride_tensor = Tensor::cat(stride_tensor.as_slice(), 0)?.unsqueeze(1)?;
|
|
Ok((anchor_points, stride_tensor))
|
|
}
|
|
fn dist2bbox(distance: &Tensor, anchor_points: &Tensor) -> Result<Tensor> {
|
|
let chunks = distance.chunk(2, 1)?;
|
|
let lt = &chunks[0];
|
|
let rb = &chunks[1];
|
|
let x1y1 = anchor_points.sub(lt)?;
|
|
let x2y2 = anchor_points.add(rb)?;
|
|
let c_xy = ((&x1y1 + &x2y2)? * 0.5)?;
|
|
let wh = (&x2y2 - &x1y1)?;
|
|
Tensor::cat(&[c_xy, wh], 1)
|
|
}
|
|
|
|
impl DetectionHead {
|
|
fn load(vb: VarBuilder, nc: usize, filters: (usize, usize, usize)) -> Result<Self> {
|
|
let ch = 16;
|
|
let dfl = Dfl::load(vb.pp("dfl"), ch)?;
|
|
let c1 = usize::max(filters.0, nc);
|
|
let c2 = usize::max(filters.0 / 4, ch * 4);
|
|
let cv3 = [
|
|
Self::load_cv3(vb.pp("cv3.0"), c1, nc, filters.0)?,
|
|
Self::load_cv3(vb.pp("cv3.1"), c1, nc, filters.1)?,
|
|
Self::load_cv3(vb.pp("cv3.2"), c1, nc, filters.2)?,
|
|
];
|
|
let cv2 = [
|
|
Self::load_cv2(vb.pp("cv2.0"), c2, ch, filters.0)?,
|
|
Self::load_cv2(vb.pp("cv2.1"), c2, ch, filters.1)?,
|
|
Self::load_cv2(vb.pp("cv2.2"), c2, ch, filters.2)?,
|
|
];
|
|
let no = nc + ch * 4;
|
|
Ok(Self {
|
|
dfl,
|
|
cv2,
|
|
cv3,
|
|
ch,
|
|
no,
|
|
})
|
|
}
|
|
|
|
fn load_cv3(
|
|
vb: VarBuilder,
|
|
c1: usize,
|
|
nc: usize,
|
|
filter: usize,
|
|
) -> Result<(ConvBlock, ConvBlock, Conv2d)> {
|
|
let block0 = ConvBlock::load(vb.pp("0"), filter, c1, 3, 1, None)?;
|
|
let block1 = ConvBlock::load(vb.pp("1"), c1, c1, 3, 1, None)?;
|
|
let conv = conv2d(c1, nc, 1, Default::default(), vb.pp("2"))?;
|
|
Ok((block0, block1, conv))
|
|
}
|
|
|
|
fn load_cv2(
|
|
vb: VarBuilder,
|
|
c2: usize,
|
|
ch: usize,
|
|
filter: usize,
|
|
) -> Result<(ConvBlock, ConvBlock, Conv2d)> {
|
|
let block0 = ConvBlock::load(vb.pp("0"), filter, c2, 3, 1, None)?;
|
|
let block1 = ConvBlock::load(vb.pp("1"), c2, c2, 3, 1, None)?;
|
|
let conv = conv2d(c2, 4 * ch, 1, Default::default(), vb.pp("2"))?;
|
|
Ok((block0, block1, conv))
|
|
}
|
|
|
|
fn forward(&self, xs0: &Tensor, xs1: &Tensor, xs2: &Tensor) -> Result<Tensor> {
|
|
let forward_cv = |xs, i: usize| {
|
|
let xs_2 = self.cv2[i].0.forward(xs)?;
|
|
let xs_2 = self.cv2[i].1.forward(&xs_2)?;
|
|
let xs_2 = self.cv2[i].2.forward(&xs_2)?;
|
|
|
|
let xs_3 = self.cv3[i].0.forward(xs)?;
|
|
let xs_3 = self.cv3[i].1.forward(&xs_3)?;
|
|
let xs_3 = self.cv3[i].2.forward(&xs_3)?;
|
|
Tensor::cat(&[&xs_2, &xs_3], 1)
|
|
};
|
|
let xs0 = forward_cv(xs0, 0)?;
|
|
let xs1 = forward_cv(xs1, 1)?;
|
|
let xs2 = forward_cv(xs2, 2)?;
|
|
|
|
let (anchors, strides) = make_anchors(&xs0, &xs1, &xs2, (8, 16, 32), 0.5)?;
|
|
let anchors = anchors.transpose(0, 1)?;
|
|
let strides = strides.transpose(0, 1)?;
|
|
|
|
let reshape = |xs: &Tensor| {
|
|
let d = xs.dim(0)?;
|
|
let el = xs.elem_count();
|
|
xs.reshape((d, self.no, el / (d * self.no)))
|
|
};
|
|
let ys0 = reshape(&xs0)?;
|
|
let ys1 = reshape(&xs1)?;
|
|
let ys2 = reshape(&xs2)?;
|
|
|
|
let x_cat = Tensor::cat(&[ys0, ys1, ys2], 2)?;
|
|
let box_ = x_cat.i((.., ..self.ch * 4))?;
|
|
let cls = x_cat.i((.., self.ch * 4..))?;
|
|
|
|
let dbox = dist2bbox(&self.dfl.forward(&box_)?, &anchors.unsqueeze(0)?)?;
|
|
let dbox = dbox.broadcast_mul(&strides)?;
|
|
Tensor::cat(&[dbox, candle_nn::ops::sigmoid(&cls)?], 1)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct YoloV8 {
|
|
net: DarkNet,
|
|
fpn: YoloV8Neck,
|
|
head: DetectionHead,
|
|
}
|
|
|
|
impl YoloV8 {
|
|
fn load(vb: VarBuilder, m: Multiples, num_classes: usize) -> Result<Self> {
|
|
let net = DarkNet::load(vb.pp("net"), m)?;
|
|
let fpn = YoloV8Neck::load(vb.pp("fpn"), m)?;
|
|
let head = DetectionHead::load(vb.pp("head"), num_classes, m.filters())?;
|
|
Ok(Self { net, fpn, head })
|
|
}
|
|
}
|
|
|
|
impl Module for YoloV8 {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let (xs1, xs2, xs3) = self.net.forward(xs)?;
|
|
let (xs1, xs2, xs3) = self.fpn.forward(&xs1, &xs2, &xs3)?;
|
|
self.head.forward(&xs1, &xs2, &xs3)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
struct Bbox {
|
|
xmin: f32,
|
|
ymin: f32,
|
|
xmax: f32,
|
|
ymax: f32,
|
|
confidence: f32,
|
|
}
|
|
|
|
// Intersection over union of two bounding boxes.
|
|
fn iou(b1: &Bbox, b2: &Bbox) -> f32 {
|
|
let b1_area = (b1.xmax - b1.xmin + 1.) * (b1.ymax - b1.ymin + 1.);
|
|
let b2_area = (b2.xmax - b2.xmin + 1.) * (b2.ymax - b2.ymin + 1.);
|
|
let i_xmin = b1.xmin.max(b2.xmin);
|
|
let i_xmax = b1.xmax.min(b2.xmax);
|
|
let i_ymin = b1.ymin.max(b2.ymin);
|
|
let i_ymax = b1.ymax.min(b2.ymax);
|
|
let i_area = (i_xmax - i_xmin + 1.).max(0.) * (i_ymax - i_ymin + 1.).max(0.);
|
|
i_area / (b1_area + b2_area - i_area)
|
|
}
|
|
|
|
// Assumes x1 <= x2 and y1 <= y2
|
|
pub fn draw_rect(
|
|
img: &mut ImageBuffer<image::Rgb<u8>, Vec<u8>>,
|
|
x1: u32,
|
|
x2: u32,
|
|
y1: u32,
|
|
y2: u32,
|
|
) {
|
|
for x in x1..=x2 {
|
|
let pixel = img.get_pixel_mut(x, y1);
|
|
*pixel = image::Rgb([255, 0, 0]);
|
|
let pixel = img.get_pixel_mut(x, y2);
|
|
*pixel = image::Rgb([255, 0, 0]);
|
|
}
|
|
for y in y1..=y2 {
|
|
let pixel = img.get_pixel_mut(x1, y);
|
|
*pixel = image::Rgb([255, 0, 0]);
|
|
let pixel = img.get_pixel_mut(x2, y);
|
|
*pixel = image::Rgb([255, 0, 0]);
|
|
}
|
|
}
|
|
|
|
pub fn report(pred: &Tensor, img: DynamicImage, w: usize, h: usize) -> Result<DynamicImage> {
|
|
let (pred_size, npreds) = pred.dims2()?;
|
|
let nclasses = pred_size - 4;
|
|
// The bounding boxes grouped by (maximum) class index.
|
|
let mut bboxes: Vec<Vec<Bbox>> = (0..nclasses).map(|_| vec![]).collect();
|
|
// Extract the bounding boxes for which confidence is above the threshold.
|
|
for index in 0..npreds {
|
|
let pred = Vec::<f32>::try_from(pred.i((.., index))?)?;
|
|
let confidence = *pred[4..].iter().max_by(|x, y| x.total_cmp(y)).unwrap();
|
|
if confidence > CONFIDENCE_THRESHOLD {
|
|
let mut class_index = 0;
|
|
for i in 0..nclasses {
|
|
if pred[4 + i] > pred[4 + class_index] {
|
|
class_index = i
|
|
}
|
|
}
|
|
if pred[class_index + 4] > 0. {
|
|
let bbox = Bbox {
|
|
xmin: pred[0] - pred[2] / 2.,
|
|
ymin: pred[1] - pred[3] / 2.,
|
|
xmax: pred[0] + pred[2] / 2.,
|
|
ymax: pred[1] + pred[3] / 2.,
|
|
confidence,
|
|
};
|
|
bboxes[class_index].push(bbox)
|
|
}
|
|
}
|
|
}
|
|
// Perform non-maximum suppression.
|
|
for bboxes_for_class in bboxes.iter_mut() {
|
|
bboxes_for_class.sort_by(|b1, b2| b2.confidence.partial_cmp(&b1.confidence).unwrap());
|
|
let mut current_index = 0;
|
|
for index in 0..bboxes_for_class.len() {
|
|
let mut drop = false;
|
|
for prev_index in 0..current_index {
|
|
let iou = iou(&bboxes_for_class[prev_index], &bboxes_for_class[index]);
|
|
if iou > NMS_THRESHOLD {
|
|
drop = true;
|
|
break;
|
|
}
|
|
}
|
|
if !drop {
|
|
bboxes_for_class.swap(current_index, index);
|
|
current_index += 1;
|
|
}
|
|
}
|
|
bboxes_for_class.truncate(current_index);
|
|
}
|
|
// Annotate the original image and print boxes information.
|
|
let (initial_h, initial_w) = (img.height(), img.width());
|
|
let w_ratio = initial_w as f32 / w as f32;
|
|
let h_ratio = initial_h as f32 / h as f32;
|
|
let mut img = img.to_rgb8();
|
|
for (class_index, bboxes_for_class) in bboxes.iter().enumerate() {
|
|
for b in bboxes_for_class.iter() {
|
|
println!("{}: {:?}", coco_classes::NAMES[class_index], b);
|
|
let xmin = ((b.xmin * w_ratio) as u32).clamp(0, initial_w - 1);
|
|
let ymin = ((b.ymin * h_ratio) as u32).clamp(0, initial_h - 1);
|
|
let xmax = ((b.xmax * w_ratio) as u32).clamp(0, initial_w - 1);
|
|
let ymax = ((b.ymax * h_ratio) as u32).clamp(0, initial_h - 1);
|
|
draw_rect(&mut img, xmin, xmax, ymin, ymax);
|
|
}
|
|
}
|
|
Ok(DynamicImage::ImageRgb8(img))
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// Model weights, in safetensors format.
|
|
#[arg(long)]
|
|
model: Option<String>,
|
|
|
|
images: Vec<String>,
|
|
}
|
|
|
|
impl Args {
|
|
fn model(&self) -> anyhow::Result<std::path::PathBuf> {
|
|
let path = match &self.model {
|
|
Some(model) => std::path::PathBuf::from(model),
|
|
None => {
|
|
let api = hf_hub::api::sync::Api::new()?;
|
|
let api = api.model("lmz/candle-yolo-v3".to_string());
|
|
api.get("yolo-v3.safetensors")?
|
|
}
|
|
};
|
|
Ok(path)
|
|
}
|
|
}
|
|
|
|
pub fn main() -> anyhow::Result<()> {
|
|
let args = Args::parse();
|
|
|
|
// Create the model and load the weights from the file.
|
|
let model = args.model()?;
|
|
let weights = unsafe { candle::safetensors::MmapedFile::new(model)? };
|
|
let weights = weights.deserialize()?;
|
|
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, &Device::Cpu);
|
|
let multiples = Multiples::s();
|
|
let model = YoloV8::load(vb, multiples, /* num_classes=*/ 80)?;
|
|
println!("model loaded");
|
|
for image_name in args.images.iter() {
|
|
println!("processing {image_name}");
|
|
let mut image_name = std::path::PathBuf::from(image_name);
|
|
let original_image = image::io::Reader::open(&image_name)?
|
|
.decode()
|
|
.map_err(candle::Error::wrap)?;
|
|
let image = {
|
|
let data = original_image
|
|
.resize_exact(640, 640, image::imageops::FilterType::Triangle)
|
|
.to_rgb8()
|
|
.into_raw();
|
|
Tensor::from_vec(data, (640, 640, 3), &Device::Cpu)?.permute((2, 0, 1))?
|
|
};
|
|
let image = (image.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
|
|
let predictions = model.forward(&image)?.squeeze(0)?;
|
|
println!("generated predictions {predictions:?}");
|
|
let image = report(&predictions, original_image, 640, 640)?;
|
|
image_name.set_extension("pp.jpg");
|
|
println!("writing {image_name:?}");
|
|
image.save(image_name)?
|
|
}
|
|
|
|
Ok(())
|
|
}
|