mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00

* Start adding llama2.c. * Model loading. * Add the llama-v2 model. * Start converting the weights. * Rotary embedding tweaks. * Get the model to generate some tokens.
241 lines
8.2 KiB
Rust
241 lines
8.2 KiB
Rust
// https://github.com/karpathy/llama2.c
|
|
#![allow(dead_code)]
|
|
#![allow(unused)]
|
|
|
|
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
mod model;
|
|
use clap::Parser;
|
|
|
|
use anyhow::Result;
|
|
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
|
|
use candle::{DType, Device, Error, IndexOp, Layout, Shape, Tensor};
|
|
use candle_nn::{Embedding, Linear, VarBuilder};
|
|
use candle_transformers::generation::LogitsProcessor;
|
|
|
|
use model::{Config, Llama};
|
|
|
|
struct TransformerWeights {
|
|
// token embedding table
|
|
token_embedding_table: Tensor, // (vocab_size, dim)
|
|
// weights for rmsnorms
|
|
rms_att_weight: Tensor, // (layer, dim) rmsnorm weights
|
|
rms_ffn_weight: Tensor, // (layer, dim)
|
|
// weights for matmuls
|
|
wq: Tensor, // (layer, dim, dim)
|
|
wk: Tensor, // (layer, dim, dim)
|
|
wv: Tensor, // (layer, dim, dim)
|
|
wo: Tensor, // (layer, dim, dim)
|
|
// weights for ffn
|
|
w1: Tensor, // (layer, hidden_dim, dim)
|
|
w2: Tensor, // (layer, dim, hidden_dim)
|
|
w3: Tensor, // (layer, hidden_dim, dim)
|
|
// final rmsnorm
|
|
rms_final_weight: Tensor, // (dim,)
|
|
// freq_cis for RoPE relatively positional embeddings
|
|
freq_cis_real: Tensor, // (seq_len, head_size/2)
|
|
freq_cis_imag: Tensor, // (seq_len, head_size/2)
|
|
}
|
|
|
|
impl Config {
|
|
fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> {
|
|
let mut buf = [0u8; 4];
|
|
r.read_exact(&mut buf)?;
|
|
Ok(i32::from_le_bytes(buf))
|
|
}
|
|
|
|
fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> {
|
|
let dim = Self::read_i32(r)? as usize;
|
|
let hidden_dim = Self::read_i32(r)? as usize;
|
|
let n_layers = Self::read_i32(r)? as usize;
|
|
let n_heads = Self::read_i32(r)? as usize;
|
|
let n_kv_heads = Self::read_i32(r)? as usize;
|
|
let vocab_size = Self::read_i32(r)? as usize;
|
|
let seq_len = Self::read_i32(r)? as usize;
|
|
Ok(Self {
|
|
dim,
|
|
hidden_dim,
|
|
n_layers,
|
|
n_heads,
|
|
n_kv_heads,
|
|
vocab_size,
|
|
seq_len,
|
|
norm_eps: 1e-5,
|
|
})
|
|
}
|
|
|
|
fn head_size(&self) -> usize {
|
|
self.dim / self.n_heads
|
|
}
|
|
}
|
|
|
|
impl TransformerWeights {
|
|
fn read_tensor<R: std::io::Read, S: Into<Shape>>(
|
|
r: &mut R,
|
|
shape: S,
|
|
dev: &Device,
|
|
) -> Result<Tensor> {
|
|
let shape = shape.into();
|
|
let mut data_t = vec![0f32; shape.elem_count()];
|
|
r.read_f32_into::<LittleEndian>(&mut data_t)?;
|
|
let tensor = Tensor::from_vec(data_t, shape, dev)?;
|
|
Ok(tensor)
|
|
}
|
|
|
|
fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> {
|
|
let token_embedding_table = Self::read_tensor(r, (c.vocab_size, c.dim), dev)?;
|
|
let rms_att_weight = Self::read_tensor(r, (c.n_layers, c.dim), dev)?;
|
|
let wq = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
let wk = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
let wv = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
let wo = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
let rms_ffn_weight = Self::read_tensor(r, (c.n_layers, c.dim), dev)?;
|
|
let w1 = Self::read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
|
let w2 = Self::read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?;
|
|
let w3 = Self::read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
|
let rms_final_weight = Self::read_tensor(r, c.dim, dev)?;
|
|
let head_size = c.head_size();
|
|
let freq_cis_real = Self::read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
|
let freq_cis_imag = Self::read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
|
Ok(Self {
|
|
token_embedding_table,
|
|
rms_att_weight,
|
|
wq,
|
|
wk,
|
|
wv,
|
|
wo,
|
|
rms_ffn_weight,
|
|
w1,
|
|
w2,
|
|
w3,
|
|
rms_final_weight,
|
|
freq_cis_real,
|
|
freq_cis_imag,
|
|
})
|
|
}
|
|
|
|
fn var_builder(&self, cfg: &Config, device: &Device) -> Result<VarBuilder> {
|
|
let mut ws = std::collections::HashMap::new();
|
|
let mut insert = |name: &str, t: Tensor| {
|
|
ws.insert(name.to_string(), t);
|
|
};
|
|
insert("rot.freq_cis_real", self.freq_cis_real.clone());
|
|
insert("rot.freq_cis_imag", self.freq_cis_imag.clone());
|
|
insert(
|
|
"model.embed_tokens.weight",
|
|
self.token_embedding_table.clone(),
|
|
);
|
|
insert("lm_head.weight", self.token_embedding_table.clone());
|
|
insert("model.norm.weight", self.rms_final_weight.clone());
|
|
for layer in 0..cfg.n_layers {
|
|
ws.insert(
|
|
format!("model.layers.{layer}.self_attn.q_proj.weight"),
|
|
self.wq.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.self_attn.k_proj.weight"),
|
|
self.wk.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.self_attn.v_proj.weight"),
|
|
self.wv.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.self_attn.o_proj.weight"),
|
|
self.wo.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.mlp.gate_proj.weight"),
|
|
self.w1.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.mlp.down_proj.weight"),
|
|
self.w2.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.mlp.up_proj.weight"),
|
|
self.w3.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.input_layernorm.weight"),
|
|
self.rms_att_weight.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.post_attention_layernorm.weight"),
|
|
self.rms_ffn_weight.i(layer)?,
|
|
);
|
|
}
|
|
let vb = VarBuilder::from_tensors(ws, DType::F32, device);
|
|
Ok(vb)
|
|
}
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// Config file in binary format.
|
|
#[arg(long)]
|
|
config: String,
|
|
}
|
|
|
|
fn main() -> anyhow::Result<()> {
|
|
let args = Args::parse();
|
|
let device = candle_examples::device(args.cpu)?;
|
|
let t = Tensor::arange(0f32, 14f32, &device)?.reshape((2, 7))?;
|
|
println!("{t}");
|
|
let mut file = std::fs::File::open(&args.config)?;
|
|
let config = Config::from_reader(&mut file)?;
|
|
println!("config: {config:?}");
|
|
let weights = TransformerWeights::from_reader(&mut file, &config, &device)?;
|
|
let vb = weights.var_builder(&config, &device)?;
|
|
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
|
|
let model = Llama::load(vb, &cache, &config)?;
|
|
|
|
println!("starting the inference loop");
|
|
let mut logits_processor = LogitsProcessor::new(299792458, None);
|
|
let mut new_tokens: Vec<u32> = vec![];
|
|
let start_gen = std::time::Instant::now();
|
|
let mut index_pos = 0;
|
|
let mut tokens = vec![1u32];
|
|
|
|
for index in 0..config.seq_len - 10 {
|
|
let start_gen = std::time::Instant::now();
|
|
let context_size = if cache.use_kv_cache && index > 0 {
|
|
1
|
|
} else {
|
|
tokens.len()
|
|
};
|
|
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
|
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
|
|
let logits = model.forward(&input, index_pos)?;
|
|
let logits = logits.squeeze(0)?;
|
|
index_pos += ctxt.len();
|
|
|
|
let next_token = logits_processor.sample(&logits)?;
|
|
tokens.push(next_token);
|
|
new_tokens.push(next_token);
|
|
println!("> {:?}", start_gen.elapsed());
|
|
println!(
|
|
"{} token: {} '{}'",
|
|
index + 1,
|
|
next_token,
|
|
0,
|
|
// tokenizer.decode(vec![next_token], true).map_err(E::msg)?
|
|
);
|
|
}
|
|
let dt = start_gen.elapsed();
|
|
println!(
|
|
"{} tokens generated ({} token/s)\n----\n{}\n----",
|
|
config.seq_len,
|
|
config.seq_len as f64 / dt.as_secs_f64(),
|
|
0,
|
|
// tokenizer.decode(new_tokens, true).map_err(E::msg)?
|
|
);
|
|
Ok(())
|
|
}
|