Files
candle/candle-examples/examples/mobileclip/main.rs
2024-09-28 14:41:28 +02:00

171 lines
5.0 KiB
Rust

#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::Error as E;
use clap::{Parser, ValueEnum};
use candle::{DType, Device, Tensor};
use candle_nn::{ops::softmax, VarBuilder};
use candle_transformers::models::mobileclip;
use tokenizers::Tokenizer;
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Which {
S1,
S2,
}
impl Which {
fn model_name(&self) -> String {
let name = match self {
Self::S1 => "S1",
Self::S2 => "S2",
};
format!("apple/MobileCLIP-{}-OpenCLIP", name)
}
fn config(&self) -> mobileclip::MobileClipConfig {
match self {
Self::S1 => mobileclip::MobileClipConfig::s1(),
Self::S2 => mobileclip::MobileClipConfig::s2(),
}
}
}
#[derive(Parser)]
struct Args {
#[arg(long, use_value_delimiter = true)]
images: Option<Vec<String>>,
#[arg(long)]
cpu: bool,
/// Use the pytorch weights rather than the safetensors ones
#[arg(long)]
use_pth: bool,
#[arg(long, use_value_delimiter = true)]
sequences: Option<Vec<String>>,
#[arg(value_enum, long, default_value_t=Which::S1)]
which: Which,
}
fn load_images<T: AsRef<std::path::Path>>(
paths: &Vec<T>,
image_size: usize,
) -> anyhow::Result<Tensor> {
let mut images = vec![];
for path in paths {
let tensor = candle_examples::imagenet::load_image_with_std_mean(
path,
image_size,
&[0.0, 0.0, 0.0],
&[1.0, 1.0, 1.0],
)?;
images.push(tensor);
}
let images = Tensor::stack(&images, 0)?;
Ok(images)
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let model_name = args.which.model_name();
let api = hf_hub::api::sync::Api::new()?;
let api = api.model(model_name);
let model_file = if args.use_pth {
api.get("open_clip_pytorch_model.bin")?
} else {
api.get("open_clip_model.safetensors")?
};
let tokenizer = api.get("tokenizer.json")?;
let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?;
let config = &args.which.config();
let device = candle_examples::device(args.cpu)?;
let vec_imgs = match args.images {
Some(imgs) => imgs,
None => vec![
"candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg".to_string(),
"candle-examples/examples/yolo-v8/assets/bike.jpg".to_string(),
],
};
let images = load_images(&vec_imgs, config.image_size)?.to_device(&device)?;
let vb = if args.use_pth {
VarBuilder::from_pth(&model_file, DType::F32, &device)?
} else {
unsafe { VarBuilder::from_mmaped_safetensors(&[model_file.clone()], DType::F32, &device)? }
};
let model = mobileclip::MobileClipModel::new(vb, config)?;
let (input_ids, vec_seq) = tokenize_sequences(args.sequences, &tokenizer, &device)?;
let (_logits_per_text, logits_per_image) = model.forward(&images, &input_ids)?;
let softmax_image = softmax(&logits_per_image, 1)?;
let softmax_image_vec = softmax_image.flatten_all()?.to_vec1::<f32>()?;
println!("softmax_image_vec: {:?}", softmax_image_vec);
let probability_vec = softmax_image_vec
.iter()
.map(|v| v * 100.0)
.collect::<Vec<f32>>();
let probability_per_image = probability_vec.len() / vec_imgs.len();
for (i, img) in vec_imgs.iter().enumerate() {
let start = i * probability_per_image;
let end = start + probability_per_image;
let prob = &probability_vec[start..end];
println!("\n\nResults for image: {}\n", img);
for (i, p) in prob.iter().enumerate() {
println!("Probability: {:.4}% Text: {}", p, vec_seq[i]);
}
}
Ok(())
}
pub fn tokenize_sequences(
sequences: Option<Vec<String>>,
tokenizer: &Tokenizer,
device: &Device,
) -> anyhow::Result<(Tensor, Vec<String>)> {
// let pad_id = *tokenizer
// .get_vocab(true)
// .get("<|endoftext|>")
// .ok_or(E::msg("No pad token"))?;
// The model does not work well if the text is padded using the <|endoftext|> token, using 0
// as the original OpenCLIP code.
let pad_id = 0;
let vec_seq = match sequences {
Some(seq) => seq,
None => vec![
"a cycling race".to_string(),
"a photo of two cats".to_string(),
"a robot holding a candle".to_string(),
],
};
let mut tokens = vec![];
for seq in vec_seq.clone() {
let encoding = tokenizer.encode(seq, true).map_err(E::msg)?;
tokens.push(encoding.get_ids().to_vec());
}
let max_len = tokens.iter().map(|v| v.len()).max().unwrap_or(0);
// Pad the sequences to have the same length
for token_vec in tokens.iter_mut() {
let len_diff = max_len - token_vec.len();
if len_diff > 0 {
token_vec.extend(vec![pad_id; len_diff]);
}
}
let input_ids = Tensor::new(tokens, device)?;
Ok((input_ids, vec_seq))
}