mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 18:28:24 +00:00

* added chatGLM readme * changed wording in readme * added readme for chinese-clip * added readme for convmixer * added readme for custom ops * added readme for efficientnet * added readme for llama * added readme to mnist-training * added readme to musicgen * added readme to quantized-phi * added readme to starcoder2 * added readme to whisper-microphone * added readme to yi * added readme to yolo-v3 * added readme to whisper-microphone * added space to example in glm4 readme * fixed mamba example readme to run mamba instead of mamba-minimal * removed slash escape character * changed moondream image to yolo-v8 example image * added procedure for making the reinforcement-learning example work with a virtual environment on my machine * added simple one line summaries to the example readmes without * changed non-existant image to yolo example's bike.jpg * added backslash to sam command * removed trailing - from siglip * added SoX to silero-vad example readme * replaced procedure for uv on mac with warning that uv isn't currently compatible with pyo3 * added example to falcon readme * added --which arg to stella-en-v5 readme * fixed image path in vgg readme * fixed the image path in the vit readme * Update README.md * Update README.md * Update README.md --------- Co-authored-by: Laurent Mazare <laurent.mazare@gmail.com>
candle-quantized-phi
Candle implementation of various quantized Phi models.
Running an example
$ cargo run --example quantized-phi --release -- --prompt "The best thing about coding in rust is "
> - it's memory safe (without you having to worry too much)
> - the borrow checker is really smart and will catch your mistakes for free, making them show up as compile errors instead of segfaulting in runtime.
>
> This alone make me prefer using rust over c++ or go, python/Cython etc.
>
> The major downside I can see now:
> - it's slower than other languages (viz: C++) and most importantly lack of libraries to leverage existing work done by community in that language. There are so many useful machine learning libraries available for c++, go, python etc but none for Rust as far as I am aware of on the first glance.
> - there aren't a lot of production ready projects which also makes it very hard to start new one (given my background)
>
> Another downside: