Files
candle/candle-examples/examples/csm/main.rs
2025-04-03 18:38:00 +02:00

209 lines
6.2 KiB
Rust

#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::{Error as E, Result};
use clap::Parser;
use candle_transformers::models::csm::{Config, Model};
use candle::{DType, Tensor};
use candle_nn::VarBuilder;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;
#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)]
enum Which {
#[value(name = "1b")]
Csm1b,
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
#[arg(long)]
use_flash_attn: bool,
#[arg(long, default_value = "[0]Hey how are you doing?")]
prompt: String,
/// The temperature used to generate samples.
#[arg(long, default_value_t = 0.7)]
temperature: f64,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// Only sample among the top K samples.
#[arg(long)]
top_k: Option<usize>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 10000)]
sample_len: usize,
/// The model size to use.
#[arg(long, default_value = "1b")]
which: Which,
#[arg(long)]
model_id: Option<String>,
#[arg(long, default_value = "main")]
revision: String,
#[arg(long)]
tokenizer: Option<String>,
#[arg(long)]
config: Option<String>,
#[arg(long)]
weights: Option<String>,
/// The mimi model weight file, in safetensor format.
#[arg(long)]
mimi_weights: Option<String>,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
}
fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature, args.repeat_penalty, args.repeat_last_n
);
let start = std::time::Instant::now();
let api = Api::new()?;
let model_id = match args.model_id {
Some(model_id) => model_id,
None => {
let name = match args.which {
Which::Csm1b => "sesame/csm-1b",
};
name.to_string()
}
};
let repo = api.repo(Repo::with_revision(
model_id,
RepoType::Model,
args.revision,
));
let filenames = match args.weights {
Some(files) => files
.split(',')
.map(std::path::PathBuf::from)
.collect::<Vec<_>>(),
None => vec![repo.get("model.safetensors")?],
};
let tokenizer_filename = match args.tokenizer {
Some(file) => std::path::PathBuf::from(file),
None => api
.model("meta-llama/Llama-3.2-1B".to_string())
.get("tokenizer.json")?,
};
let mimi_filename = match args.mimi_weights {
Some(model) => std::path::PathBuf::from(model),
None => Api::new()?
.model("kyutai/mimi".to_string())
.get("model.safetensors")?,
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
let config: Config = match args.config {
Some(config_file) => serde_json::from_slice(&std::fs::read(config_file)?)?,
None => {
let config_file = repo.get("config.json")?;
serde_json::from_slice(&std::fs::read(config_file)?)?
}
};
let device = candle_examples::device(args.cpu)?;
let (mut model, device) = {
let dtype = device.bf16_default_to_f32();
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
let model = Model::new(&config, vb)?;
(model, device)
};
let _mimi_model = {
use candle_transformers::models::mimi;
let vb =
unsafe { VarBuilder::from_mmaped_safetensors(&[mimi_filename], DType::F32, &device)? };
let config = mimi::Config::v0_1(None);
mimi::Model::new(config, vb)?
};
let cb = config.audio_num_codebooks;
println!("loaded the model in {:?}", start.elapsed());
if args.prompt.ends_with(".safetensors") {
let prompt = candle::safetensors::load(args.prompt, &device)?;
let mut tokens = prompt
.get("tokens")
.expect("no tokens in prompt")
.to_dtype(DType::U32)?;
let mut mask = prompt.get("mask").expect("no mask in prompt").clone();
println!("tokens:\n{tokens:?}");
println!("mask:\n{mask:?}");
let mut lp = candle_transformers::generation::LogitsProcessor::new(42, Some(0.8), None);
let mut const_mask = vec![1u8; cb];
const_mask.push(0);
let const_mask = Tensor::from_vec(const_mask, (1, 1, cb + 1), &device)?;
let mut pos = 0;
for i in 0..100 {
let mut frame = model.generate_frame(&tokens, &mask, pos, &mut lp)?;
pos += tokens.dim(1)?;
frame.push(0);
println!("frame {i} {pos}:\n{frame:?}");
tokens = Tensor::from_vec(frame, (1, 1, cb + 1), &device)?;
mask = const_mask.clone();
}
} else {
let prompt = tokenizer.encode(args.prompt, true).map_err(E::msg)?;
println!("{prompt:?}");
}
Ok(())
}