mirror of
https://github.com/huggingface/candle.git
synced 2025-06-18 11:37:11 +00:00

* Refactor the reduce ops in order to introduce argmin/argmax. * Clippy fixes. * Use the newly introduced argmax. * Fix the strided case. * Handle the non-contiguous case.
70 lines
2.6 KiB
Rust
70 lines
2.6 KiB
Rust
// This should rearch 91.5% accuracy.
|
|
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
use anyhow::Result;
|
|
use candle::{DType, Tensor, Var, D};
|
|
|
|
const IMAGE_DIM: usize = 784;
|
|
const LABELS: usize = 10;
|
|
|
|
fn log_softmax<D: candle::shape::Dim>(xs: &Tensor, d: D) -> candle::Result<Tensor> {
|
|
let d = d.to_index(xs.shape(), "log-softmax")?;
|
|
let max = xs.max_keepdim(d)?;
|
|
let diff = xs.broadcast_sub(&max)?;
|
|
let sum_exp = diff.exp()?.sum_keepdim(d)?;
|
|
let log_sm = diff.broadcast_sub(&sum_exp.log()?)?;
|
|
Ok(log_sm)
|
|
}
|
|
|
|
// TODO: Once the index_select backprop is efficient enough, switch to using this.
|
|
fn _nll_loss(inp: &Tensor, target: &Tensor) -> candle::Result<Tensor> {
|
|
let b_sz = target.shape().r1()?;
|
|
inp.index_select(target, 0)?.sum_all()? / b_sz as f64
|
|
}
|
|
|
|
pub fn main() -> Result<()> {
|
|
let dev = candle::Device::cuda_if_available(0)?;
|
|
let m = candle_nn::vision::mnist::load_dir("data")?;
|
|
println!("train-images: {:?}", m.train_images.shape());
|
|
println!("train-labels: {:?}", m.train_labels.shape());
|
|
println!("test-images: {:?}", m.test_images.shape());
|
|
println!("test-labels: {:?}", m.test_labels.shape());
|
|
let train_labels = m.train_labels;
|
|
let train_images = m.train_images;
|
|
let train_labels = train_labels.to_vec1::<u8>()?;
|
|
let train_label_mask = train_labels
|
|
.iter()
|
|
.flat_map(|l| (0..LABELS).map(|i| f32::from(i == *l as usize)))
|
|
.collect::<Vec<_>>();
|
|
let train_label_mask = Tensor::from_vec(train_label_mask, (train_labels.len(), LABELS), &dev)?;
|
|
let ws = Var::zeros((IMAGE_DIM, LABELS), DType::F32, &dev)?;
|
|
let bs = Var::zeros(LABELS, DType::F32, &dev)?;
|
|
let sgd = candle_nn::SGD::new(&[&ws, &bs], 1.0);
|
|
let test_images = m.test_images;
|
|
let test_labels = m.test_labels.to_dtype(DType::U32)?;
|
|
for epoch in 1..200 {
|
|
let logits = train_images.matmul(&ws)?.broadcast_add(&bs)?;
|
|
let log_sm = log_softmax(&logits, D::Minus1)?;
|
|
let loss = (&log_sm * &train_label_mask)?
|
|
.sum_all()?
|
|
.affine(-1f64 / train_images.dim(0)? as f64, 0f64)?;
|
|
sgd.backward_step(&loss)?;
|
|
|
|
let test_logits = test_images.matmul(&ws)?.broadcast_add(&bs)?;
|
|
let sum_ok = test_logits
|
|
.argmax(D::Minus1)?
|
|
.eq(&test_labels)?
|
|
.to_dtype(DType::F32)?
|
|
.sum_all()?
|
|
.to_scalar::<f32>()?;
|
|
let test_accuracy = sum_ok / test_labels.shape().r1()? as f32;
|
|
println!(
|
|
"{epoch:4} train loss: {:8.5} test acc: {:5.2}%",
|
|
loss.to_scalar::<f32>()?,
|
|
100. * test_accuracy
|
|
)
|
|
}
|
|
Ok(())
|
|
}
|