mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 11:56:45 +00:00

* Move the vision datasets to a separate crate. * Move the batcher bits. * Update the readme. * Move the tiny-stories bits. --------- Co-authored-by: Jane Doe <jane.doe@example.org>
63 lines
2.1 KiB
Rust
63 lines
2.1 KiB
Rust
//! The CIFAR-10 dataset.
|
|
//!
|
|
//! The files can be downloaded from the following page:
|
|
//! <https://www.cs.toronto.edu/~kriz/cifar.html>
|
|
//! The binary version of the dataset is used.
|
|
use crate::vision::Dataset;
|
|
use candle::{DType, Device, Result, Tensor};
|
|
use std::fs::File;
|
|
use std::io::{BufReader, Read};
|
|
|
|
const W: usize = 32;
|
|
const H: usize = 32;
|
|
const C: usize = 3;
|
|
const BYTES_PER_IMAGE: usize = W * H * C + 1;
|
|
const SAMPLES_PER_FILE: usize = 10000;
|
|
|
|
fn read_file(filename: &std::path::Path) -> Result<(Tensor, Tensor)> {
|
|
let mut buf_reader = BufReader::new(File::open(filename)?);
|
|
let mut data = vec![0u8; SAMPLES_PER_FILE * BYTES_PER_IMAGE];
|
|
buf_reader.read_exact(&mut data)?;
|
|
let mut images = vec![];
|
|
let mut labels = vec![];
|
|
for index in 0..SAMPLES_PER_FILE {
|
|
let content_offset = BYTES_PER_IMAGE * index;
|
|
labels.push(data[content_offset]);
|
|
images.push(&data[1 + content_offset..content_offset + BYTES_PER_IMAGE]);
|
|
}
|
|
let images: Vec<u8> = images
|
|
.iter()
|
|
.copied()
|
|
.flatten()
|
|
.copied()
|
|
.collect::<Vec<_>>();
|
|
let labels = Tensor::from_vec(labels, SAMPLES_PER_FILE, &Device::Cpu)?;
|
|
let images = Tensor::from_vec(images, (SAMPLES_PER_FILE, C, H, W), &Device::Cpu)?;
|
|
let images = (images.to_dtype(DType::F32)? / 255.)?;
|
|
Ok((images, labels))
|
|
}
|
|
|
|
pub fn load_dir<T: AsRef<std::path::Path>>(dir: T) -> Result<Dataset> {
|
|
let dir = dir.as_ref();
|
|
let (test_images, test_labels) = read_file(&dir.join("test_batch.bin"))?;
|
|
let train_images_and_labels = [
|
|
"data_batch_1.bin",
|
|
"data_batch_2.bin",
|
|
"data_batch_3.bin",
|
|
"data_batch_4.bin",
|
|
"data_batch_5.bin",
|
|
]
|
|
.iter()
|
|
.map(|x| read_file(&dir.join(x)))
|
|
.collect::<Result<Vec<_>>>()?;
|
|
let (train_images, train_labels): (Vec<_>, Vec<_>) =
|
|
train_images_and_labels.into_iter().unzip();
|
|
Ok(Dataset {
|
|
train_images: Tensor::cat(&train_images, 0)?,
|
|
train_labels: Tensor::cat(&train_labels, 0)?,
|
|
test_images,
|
|
test_labels,
|
|
labels: 10,
|
|
})
|
|
}
|