Files
candle/candle-transformers/src/models/quantized_qwen3.rs
Snake 485ddf2996 Fixed Quantized Qwen3 Model (#2951)
* optimize KV cache to reduce GPU memory usage

* revert to using candle_nn::kv_cache::KvCache with initial capacity of 512
2025-05-13 05:53:42 +02:00

426 lines
14 KiB
Rust

//! Qwen3 implementation with quantization support.
//!
//! Based on the Qwen3 architecture and implemented with quantized weights
//! for reduced memory usage and faster inference on compatible hardware.
//!
//! References:
//! - [Qwen3 Models](https://huggingface.co/Qwen/Qwen3-0.6B) (architecture based on official implementations)
//!
use super::with_tracing::QMatMul;
use crate::{quantized_nn::RmsNorm, utils::repeat_kv};
use candle::quantized::{gguf_file, QTensor};
use candle::{DType, Device, Result, Tensor};
use candle_nn::{kv_cache::KvCache, Activation, Embedding, Module};
use std::io::{Read, Seek};
use std::sync::Arc;
struct Gguf<R: Read + Seek> {
ct: gguf_file::Content,
reader: R,
device: Device,
}
impl<R: Read + Seek> Gguf<R> {
fn new(ct: gguf_file::Content, reader: R, device: Device) -> Self {
Self { ct, reader, device }
}
fn qmatmul(&mut self, name: &str) -> Result<QMatMul> {
let ws = self.ct.tensor(&mut self.reader, name, &self.device)?;
QMatMul::from_weights(ws.into())
}
fn rms_norm(&mut self, name: &str, eps: f64) -> Result<RmsNorm> {
let ws = self.ct.tensor(&mut self.reader, name, &self.device)?;
RmsNorm::from_qtensor(ws, eps)
}
fn metadata(&self) -> &std::collections::HashMap<String, gguf_file::Value> {
&self.ct.metadata
}
fn tensor(&mut self, name: &str) -> Result<QTensor> {
self.ct.tensor(&mut self.reader, name, &self.device)
}
}
#[derive(Debug, Clone)]
struct MlpWeights {
gate_proj: QMatMul,
up_proj: QMatMul,
down_proj: QMatMul,
act_fn: Activation,
span: tracing::Span,
}
impl MlpWeights {
fn new<R: Read + Seek>(gg: &mut Gguf<R>, prefix: &str) -> Result<Self> {
let gate_proj = gg.qmatmul(&format!("{prefix}.ffn_gate.weight"))?;
let up_proj = gg.qmatmul(&format!("{prefix}.ffn_up.weight"))?;
let down_proj = gg.qmatmul(&format!("{prefix}.ffn_down.weight"))?;
let act_fn = Activation::Silu;
let span = tracing::span!(tracing::Level::TRACE, "mlp");
Ok(Self {
gate_proj,
up_proj,
down_proj,
act_fn,
span,
})
}
}
impl Module for MlpWeights {
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
let gate = self.gate_proj.forward(x)?.apply(&self.act_fn)?;
let up = self.up_proj.forward(x)?;
let gated = (gate * up)?;
self.down_proj.forward(&gated)
}
}
#[derive(Debug, Clone)]
struct RotaryEmbedding {
sin: Tensor,
cos: Tensor,
}
impl RotaryEmbedding {
fn new(
dtype: DType,
head_dim: usize,
max_position_embeddings: usize,
rope_theta: f64,
dev: &Device,
) -> Result<Self> {
let dim = head_dim;
let max_seq_len = max_position_embeddings;
let inv_freq: Vec<_> = (0..dim)
.step_by(2)
.map(|i| 1f32 / rope_theta.powf(i as f64 / dim as f64) as f32)
.collect();
let inv_freq_len = inv_freq.len();
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
.to_dtype(dtype)?
.reshape((max_seq_len, 1))?;
let freqs = t.matmul(&inv_freq)?;
Ok(Self {
sin: freqs.sin()?,
cos: freqs.cos()?,
})
}
/// Apply RoPE (q, k shape: B x H x L x D)
fn apply(&self, q: &Tensor, k: &Tensor, offset: usize) -> Result<(Tensor, Tensor)> {
let (_, _, seq_len, _) = q.dims4()?;
let cos = self.cos.narrow(0, offset, seq_len)?.to_dtype(q.dtype())?;
let sin = self.sin.narrow(0, offset, seq_len)?.to_dtype(q.dtype())?;
let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
Ok((q_embed, k_embed))
}
}
#[derive(Debug, Clone)]
struct AttentionWeights {
q_proj: QMatMul,
k_proj: QMatMul,
v_proj: QMatMul,
o_proj: QMatMul,
q_norm: RmsNorm,
k_norm: RmsNorm,
num_heads: usize,
num_kv_heads: usize,
num_kv_groups: usize,
head_dim: usize,
rotary_emb: Arc<RotaryEmbedding>,
kv_cache: KvCache,
span_attn: tracing::Span,
}
impl AttentionWeights {
fn new<R: Read + Seek>(
gg: &mut Gguf<R>,
num_heads: usize,
num_kv_heads: usize,
head_dim: usize,
rms_norm_eps: f64,
rotary_emb: Arc<RotaryEmbedding>,
prefix: &str,
) -> Result<Self> {
let num_kv_groups = num_heads / num_kv_heads;
let q_proj = gg.qmatmul(&format!("{prefix}.attn_q.weight"))?;
let k_proj = gg.qmatmul(&format!("{prefix}.attn_k.weight"))?;
let v_proj = gg.qmatmul(&format!("{prefix}.attn_v.weight"))?;
let o_proj = gg.qmatmul(&format!("{prefix}.attn_output.weight"))?;
let q_norm = gg.rms_norm(&format!("{prefix}.attn_q_norm.weight"), rms_norm_eps)?;
let k_norm = gg.rms_norm(&format!("{prefix}.attn_k_norm.weight"), rms_norm_eps)?;
// Initialize KV cache with 512 tokens capacity to reduce initial memory allocation.
// The cache will grow in chunks of 512 tokens when needed.
let kv_cache = KvCache::new(2, 512);
let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
Ok(Self {
q_proj,
k_proj,
v_proj,
o_proj,
q_norm,
k_norm,
num_heads,
num_kv_heads,
num_kv_groups,
head_dim,
rotary_emb,
kv_cache,
span_attn,
})
}
fn forward(&mut self, x: &Tensor, attn_mask: Option<&Tensor>, offset: usize) -> Result<Tensor> {
let _enter = self.span_attn.enter();
let (b, l, _) = x.dims3()?;
let q = self.q_proj.forward(x)?;
let k = self.k_proj.forward(x)?;
let v = self.v_proj.forward(x)?;
let q = q
.reshape((b, l, self.num_heads, self.head_dim))?
.transpose(1, 2)?;
let k = k
.reshape((b, l, self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?;
let v = v
.reshape((b, l, self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?;
let q_flat = q.flatten(0, 2)?;
let k_flat = k.flatten(0, 2)?;
let q_flat = self.q_norm.forward(&q_flat)?;
let k_flat = self.k_norm.forward(&k_flat)?;
let q = q_flat.reshape((b, self.num_heads, l, self.head_dim))?;
let k = k_flat.reshape((b, self.num_kv_heads, l, self.head_dim))?;
let (q, k) = self.rotary_emb.apply(&q, &k, offset)?;
// Reset KV cache if we're at the first position
if offset == 0 {
self.kv_cache.reset();
}
let (k, v) = self.kv_cache.append(&k.contiguous()?, &v.contiguous()?)?;
let k = repeat_kv(k, self.num_kv_groups)?.contiguous()?;
let v = repeat_kv(v, self.num_kv_groups)?.contiguous()?;
let scale = 1.0 / (self.head_dim as f64).sqrt();
let mut scores = (q.matmul(&k.transpose(2, 3)?)? * scale)?;
if let Some(m) = attn_mask {
let m_dtype = m.dtype();
let scores_dtype = scores.dtype();
let mask = if m_dtype != scores_dtype {
m.to_dtype(scores_dtype)?
} else {
m.clone()
};
scores = scores.broadcast_add(&mask)?;
}
let probs = candle_nn::ops::softmax_last_dim(&scores)?;
let ctx = probs.matmul(&v)?; // (B, H, L, D)
let reshaped_ctx = ctx
.transpose(1, 2)?
.reshape((b, l, self.num_heads * self.head_dim))?;
self.o_proj.forward(&reshaped_ctx)
}
}
#[derive(Debug, Clone)]
struct LayerWeights {
self_attn: AttentionWeights,
mlp: MlpWeights,
ln1: RmsNorm,
ln2: RmsNorm,
}
impl LayerWeights {
fn new<R: Read + Seek>(
gg: &mut Gguf<R>,
num_attention_heads: usize,
num_key_value_heads: usize,
head_dim: usize,
rms_norm_eps: f64,
rotary: Arc<RotaryEmbedding>,
layer_idx: usize,
) -> Result<Self> {
let prefix = format!("blk.{layer_idx}");
let ln1 = gg.rms_norm(&format!("{prefix}.attn_norm.weight"), rms_norm_eps)?;
let ln2 = gg.rms_norm(&format!("{prefix}.ffn_norm.weight"), rms_norm_eps)?;
let self_attn = AttentionWeights::new(
gg,
num_attention_heads,
num_key_value_heads,
head_dim,
rms_norm_eps,
rotary,
&prefix,
)?;
let mlp = MlpWeights::new(gg, &prefix)?;
Ok(Self {
self_attn,
mlp,
ln1,
ln2,
})
}
fn forward(&mut self, x: &Tensor, mask: Option<&Tensor>, offset: usize) -> Result<Tensor> {
let h = self.ln1.forward(x)?;
let h = self.self_attn.forward(&h, mask, offset)?;
let x = (x + h)?;
let h2 = self.ln2.forward(&x)?;
let h2 = h2.apply(&self.mlp)?;
x + h2
}
}
#[derive(Debug, Clone)]
pub struct ModelWeights {
embed_tokens: Embedding,
layers: Vec<LayerWeights>,
norm: RmsNorm,
lm_head: QMatMul,
device: Device,
dtype: DType,
span: tracing::Span,
span_output: tracing::Span,
}
impl ModelWeights {
pub fn from_gguf<R: Read + Seek>(
ct: gguf_file::Content,
reader: &mut R,
device: &Device,
) -> Result<Self> {
let mut gg = Gguf::new(ct, reader, device.clone());
let md_get = |s: &str| match gg.metadata().get(s) {
None => candle::bail!("cannot find {s} in metadata"),
Some(v) => Ok(v),
};
let num_attention_heads = md_get("qwen3.attention.head_count")?.to_u32()? as usize;
let num_kv_heads = md_get("qwen3.attention.head_count_kv")?.to_u32()? as usize;
let head_dim = md_get("qwen3.attention.key_length")?.to_u32()? as usize;
let num_layers = md_get("qwen3.block_count")?.to_u32()? as usize;
let hidden_size = md_get("qwen3.embedding_length")?.to_u32()? as usize;
let max_position_embeddings = md_get("qwen3.context_length")?.to_u32()? as usize;
let rms_norm_eps = md_get("qwen3.attention.layer_norm_rms_epsilon")?.to_f32()? as f64;
let rope_freq_base = md_get("qwen3.rope.freq_base")?.to_f32()? as f64;
let dtype = match gg.metadata().get("general.dtype") {
Some(v) => match v.to_u32() {
Ok(0) => DType::F32,
Ok(1) => DType::F16,
_ => DType::F16,
},
None => DType::F16,
};
let embed_tensor = gg.tensor("token_embd.weight")?;
let embed_tokens = Embedding::new(embed_tensor.dequantize(device)?, hidden_size);
let rotary = Arc::new(RotaryEmbedding::new(
dtype,
head_dim,
max_position_embeddings,
rope_freq_base,
device,
)?);
let mut layers = Vec::with_capacity(num_layers);
for i in 0..num_layers {
layers.push(LayerWeights::new(
&mut gg,
num_attention_heads,
num_kv_heads,
head_dim,
rms_norm_eps,
rotary.clone(),
i,
)?);
}
let norm = gg.rms_norm("output_norm.weight", rms_norm_eps)?;
// Load output projection tensor, falling back to tied embeddings like gemma3
let lm_head_tensor = match gg.tensor("output.weight") {
Ok(tensor) => tensor,
Err(_) => gg.tensor("token_embd.weight")?,
};
let lm_head = QMatMul::from_weights(lm_head_tensor.into())?;
let span = tracing::span!(tracing::Level::TRACE, "model");
let span_output = tracing::span!(tracing::Level::TRACE, "output");
Ok(Self {
embed_tokens,
layers,
norm,
lm_head,
device: device.clone(),
dtype,
span,
span_output,
})
}
fn causal_mask(
&self,
b: usize,
tgt: usize,
offset: usize,
sw: Option<usize>,
) -> Result<Tensor> {
let minf = f32::NEG_INFINITY;
let mask: Vec<_> = (0..tgt)
.flat_map(|i| {
(0..(tgt + offset)).map(move |j| {
let past_ok = j <= i + offset;
let sw_ok = match sw {
Some(w) => (i + offset) as i64 - j as i64 <= w as i64,
None => true,
};
if past_ok && sw_ok {
0.
} else {
minf
}
})
})
.collect();
Tensor::from_slice(&mask, (b, 1, tgt, tgt + offset), &self.device)?.to_dtype(self.dtype)
}
pub fn forward(&mut self, input: &Tensor, offset: usize) -> Result<Tensor> {
let _enter = self.span.enter();
let (b, l) = input.dims2()?;
let mut h = self.embed_tokens.forward(input)?;
let causal_mask = if l == 1 {
None
} else {
Some(self.causal_mask(b, l, offset, None)?)
};
for layer in &mut self.layers {
h = layer.forward(&h, causal_mask.as_ref(), offset)?;
}
let h = self.norm.forward(&h)?;
let _enter = self.span_output.enter();
let last_hidden = h.narrow(1, l - 1, 1)?;
self.lm_head.forward(&last_hidden)?.squeeze(1)
}
}