mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
250 lines
7.6 KiB
Rust
250 lines
7.6 KiB
Rust
/// This example contains some simple benchmarks so that it's easy to run them in perf etc.
|
|
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
use candle::quantized::GgmlType;
|
|
use candle::{CpuStorage, Device, Layout, Result, Shape, Tensor, D};
|
|
use clap::{Parser, Subcommand};
|
|
|
|
trait Benchmark {
|
|
type PreProcessData;
|
|
type RunResult;
|
|
|
|
fn preprocess() -> Result<Self::PreProcessData>;
|
|
fn run_one(_: &Self::PreProcessData) -> Result<Self::RunResult>;
|
|
|
|
const ITERS: usize;
|
|
}
|
|
|
|
struct Im2Col(usize, usize);
|
|
impl candle::CustomOp1 for Im2Col {
|
|
fn name(&self) -> &'static str {
|
|
"im2col"
|
|
}
|
|
|
|
fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)> {
|
|
let &Self(h_k, w_k) = self;
|
|
let (b, c, h, w) = layout.shape().dims4()?;
|
|
let (h_out, w_out) = (h - h_k + 1, w - w_k + 1);
|
|
let slice = storage.as_slice::<f32>()?;
|
|
let src = match layout.contiguous_offsets() {
|
|
None => candle::bail!("input has to be contiguous"),
|
|
Some((o1, o2)) => &slice[o1..o2],
|
|
};
|
|
let mut dst = vec![0f32; b * h_out * w_out * c * h_k * w_k];
|
|
let (s_b, s_c, s_h) = (c * h * w, h * w, w);
|
|
for b_idx in 0..b {
|
|
let src_idx = b_idx * s_b;
|
|
let dst_idx = b_idx * h_out * w_out * c * h_k * w_k;
|
|
for h_idx in 0..h_out {
|
|
let dst_idx = dst_idx + h_idx * w_out * c * h_k * w_k;
|
|
for w_idx in 0..w_out {
|
|
let dst_idx = dst_idx + w_idx * c * h_k * w_k;
|
|
for c_idx in 0..c {
|
|
let dst_idx = dst_idx + c_idx * h_k * w_k;
|
|
let src_idx = c_idx * s_c + src_idx;
|
|
for h_k_idx in 0..h_k {
|
|
let src_idx = src_idx + (h_idx + h_k_idx) * s_h + w_idx;
|
|
let dst_idx = dst_idx + h_k_idx * w_k;
|
|
dst[dst_idx..dst_idx + w_k]
|
|
.copy_from_slice(&src[src_idx..src_idx + w_k])
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
let storage = candle::WithDType::to_cpu_storage_owned(dst);
|
|
Ok((storage, (b * h_out * w_out, c * h_k * w_k).into()))
|
|
}
|
|
}
|
|
|
|
// Conv1d example as used in whisper.
|
|
struct Conv1d;
|
|
impl Benchmark for Conv1d {
|
|
type PreProcessData = (Tensor, Tensor);
|
|
type RunResult = Tensor;
|
|
fn preprocess() -> Result<Self::PreProcessData> {
|
|
let inp = Tensor::randn(0f32, 1., (1, 384, 3000), &Device::Cpu)?;
|
|
let w = Tensor::randn(0f32, 1., (384, 384, 3), &Device::Cpu)?;
|
|
Ok((inp, w))
|
|
}
|
|
|
|
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
|
|
d.0.conv1d(&d.1, 0, 1, 1, 1)
|
|
}
|
|
|
|
const ITERS: usize = 5;
|
|
}
|
|
|
|
// Conv2d example as used in stable-diffusion.
|
|
struct Conv2d;
|
|
impl Benchmark for Conv2d {
|
|
type PreProcessData = (Tensor, Tensor);
|
|
type RunResult = Tensor;
|
|
|
|
fn preprocess() -> Result<Self::PreProcessData> {
|
|
let inp = Tensor::randn(0f32, 1., (2, 320, 96, 96), &Device::Cpu)?;
|
|
let w = Tensor::randn(0f32, 1., (320, 320, 3, 3), &Device::Cpu)?;
|
|
Ok((inp, w))
|
|
}
|
|
|
|
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
|
|
d.0.conv2d(&d.1, 0, 1, 1, 1)
|
|
}
|
|
|
|
const ITERS: usize = 5;
|
|
}
|
|
|
|
// Conv2d example as used in stable-diffusion, im2col implementation.
|
|
struct Conv2dIm2Col;
|
|
impl Benchmark for Conv2dIm2Col {
|
|
type PreProcessData = (Tensor, Tensor);
|
|
type RunResult = Tensor;
|
|
|
|
fn preprocess() -> Result<Self::PreProcessData> {
|
|
let inp = Tensor::randn(0f32, 1., (2, 320, 96, 96), &Device::Cpu)?;
|
|
let w = Tensor::randn(0f32, 1., (320, 320, 3, 3), &Device::Cpu)?;
|
|
Ok((inp, w))
|
|
}
|
|
|
|
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
|
|
// d.0.conv2d(&d.1, 0, 1, 1, 1)
|
|
let (b, _, h, w) = d.0.dims4()?;
|
|
let (h_k, w_k) = (3, 3);
|
|
let (h_out, w_out) = (h - h_k + 1, w - w_k + 1);
|
|
let col = d.0.apply_op1_no_bwd(&Im2Col(h_k, w_k))?;
|
|
let res = col.matmul(&d.1.flatten_from(1)?.t()?)?;
|
|
let res = res
|
|
.reshape((b, h_out, w_out, ()))?
|
|
.permute((0, 3, 1, 2))?
|
|
.contiguous()?;
|
|
Ok(res)
|
|
}
|
|
|
|
const ITERS: usize = 5;
|
|
}
|
|
|
|
struct Matmul;
|
|
impl Benchmark for Matmul {
|
|
type PreProcessData = (Tensor, Tensor);
|
|
type RunResult = Tensor;
|
|
fn preprocess() -> Result<Self::PreProcessData> {
|
|
let lhs = Tensor::randn(0f32, 1., (1024, 1024), &Device::Cpu)?;
|
|
let rhs = Tensor::randn(0f32, 1., (1024, 1024), &Device::Cpu)?;
|
|
Ok((lhs, rhs))
|
|
}
|
|
|
|
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
|
|
d.0.matmul(&d.1)
|
|
}
|
|
|
|
const ITERS: usize = 100;
|
|
}
|
|
|
|
// This benchmark is similar to:
|
|
// https://github.com/ggerganov/llama.cpp/blob/master/examples/benchmark/benchmark-matmult.cpp
|
|
struct QMatMul;
|
|
impl Benchmark for QMatMul {
|
|
type PreProcessData = (candle::quantized::QMatMul, Tensor);
|
|
type RunResult = Tensor;
|
|
fn preprocess() -> Result<Self::PreProcessData> {
|
|
let zeros = vec![candle::quantized::k_quants::BlockQ4_0::zeros(); 4096 * 11008 / 32];
|
|
let mm = candle::quantized::QTensor::new(zeros, (4096, 11008))?;
|
|
let mm = candle::quantized::QMatMul::from_qtensor(mm);
|
|
let arg = Tensor::randn(0f32, 1., (128, 11008), &Device::Cpu)?;
|
|
Ok((mm, arg))
|
|
}
|
|
|
|
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
|
|
d.0.forward(&d.1)
|
|
}
|
|
|
|
const ITERS: usize = 100;
|
|
}
|
|
|
|
struct Softmax;
|
|
impl Benchmark for Softmax {
|
|
type PreProcessData = Tensor;
|
|
type RunResult = Tensor;
|
|
fn preprocess() -> Result<Self::PreProcessData> {
|
|
// Typical whisper tiny size.
|
|
let x = Tensor::randn(0f32, 1., (1, 6, 200, 1500), &Device::Cpu)?;
|
|
Ok(x)
|
|
}
|
|
|
|
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
|
|
candle_nn::ops::softmax(d, D::Minus1)
|
|
}
|
|
|
|
const ITERS: usize = 100;
|
|
}
|
|
|
|
struct SoftmaxLastDim;
|
|
impl Benchmark for SoftmaxLastDim {
|
|
type PreProcessData = Tensor;
|
|
type RunResult = Tensor;
|
|
fn preprocess() -> Result<Self::PreProcessData> {
|
|
// Typical whisper tiny size.
|
|
let x = Tensor::randn(0f32, 1., (1, 6, 200, 1500), &Device::Cpu)?;
|
|
Ok(x)
|
|
}
|
|
|
|
fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
|
|
candle_nn::ops::softmax_last_dim(d)
|
|
}
|
|
|
|
const ITERS: usize = 100;
|
|
}
|
|
|
|
fn run<B: Benchmark>(iters: Option<usize>) -> Result<()> {
|
|
use std::hint::black_box;
|
|
|
|
let iters = iters.unwrap_or(B::ITERS);
|
|
let d = B::preprocess()?;
|
|
let start = std::time::Instant::now();
|
|
for _iter in 0..iters {
|
|
let _res = black_box(B::run_one(black_box(&d))?);
|
|
}
|
|
println!("{:?}", start.elapsed() / iters as u32);
|
|
Ok(())
|
|
}
|
|
|
|
#[derive(Subcommand, Debug, Clone)]
|
|
enum Task {
|
|
Conv1d,
|
|
Conv2d,
|
|
Conv2dIm2Col,
|
|
Matmul,
|
|
Qmatmul,
|
|
Softmax,
|
|
SoftmaxLastDim,
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
pub struct Args {
|
|
/// The benchmark to be run.
|
|
#[command(subcommand)]
|
|
task: Task,
|
|
|
|
#[arg(long)]
|
|
iters: Option<usize>,
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
let args = Args::parse();
|
|
match args.task {
|
|
Task::Conv1d => run::<Conv1d>(args.iters)?,
|
|
Task::Conv2d => run::<Conv2d>(args.iters)?,
|
|
Task::Conv2dIm2Col => run::<Conv2dIm2Col>(args.iters)?,
|
|
Task::Matmul => run::<Matmul>(args.iters)?,
|
|
Task::Softmax => run::<Softmax>(args.iters)?,
|
|
Task::SoftmaxLastDim => run::<SoftmaxLastDim>(args.iters)?,
|
|
Task::Qmatmul => run::<QMatMul>(args.iters)?,
|
|
}
|
|
Ok(())
|
|
}
|