mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 02:38:10 +00:00
176 lines
6.2 KiB
Rust
176 lines
6.2 KiB
Rust
use anyhow::{Context, Result};
|
|
use candle_core::{Device, Shape, Tensor, Var};
|
|
mod test_utils;
|
|
|
|
fn simple_grad(device: &Device) -> Result<()> {
|
|
let x = Var::new(&[3f32, 1., 4.], device)?;
|
|
let x = x.as_tensor();
|
|
let y = (((x * x)? + x * 5f64)? + 4f64)?;
|
|
let grads = y.backward()?;
|
|
let grad_x = grads.get(x).context("no grad for x")?;
|
|
assert_eq!(x.to_vec1::<f32>()?, [3., 1., 4.]);
|
|
// y = x^2 + 5.x + 4
|
|
assert_eq!(y.to_vec1::<f32>()?, [28., 10., 40.]);
|
|
// dy/dx = 2.x + 5
|
|
assert_eq!(grad_x.to_vec1::<f32>()?, [11., 7., 13.]);
|
|
Ok(())
|
|
}
|
|
|
|
fn sum_grad(device: &Device) -> Result<()> {
|
|
let x = Var::new(&[3f32, 1., 4.], device)?;
|
|
let x = x.as_tensor();
|
|
let y = (x.sqr()?.sum_keepdim(0)? * 2.)?;
|
|
let grads = y.backward()?;
|
|
let grad_x = grads.get(x).context("no grad for x")?;
|
|
assert_eq!(y.to_vec1::<f32>()?, [52.]);
|
|
// y = 2.x^2 so dy/dx = 4.x
|
|
assert_eq!(grad_x.to_vec1::<f32>()?, &[12., 4., 16.]);
|
|
|
|
// Same test as before but squeezing on the last dimension.
|
|
let y = (x.sqr()?.sum_keepdim(0)? * 2.)?.squeeze(0)?;
|
|
let grads = y.backward()?;
|
|
let grad_x = grads.get(x).context("no grad for x")?;
|
|
assert_eq!(y.to_scalar::<f32>()?, 52.);
|
|
// y = 2.x^2 so dy/dx = 4.x
|
|
assert_eq!(grad_x.to_vec1::<f32>()?, &[12., 4., 16.]);
|
|
Ok(())
|
|
}
|
|
|
|
fn matmul_grad(device: &Device) -> Result<()> {
|
|
let data: Vec<_> = (0..12).map(|i| i as f32).collect();
|
|
let x = Var::from_slice(&data, (2, 2, 3), device)?;
|
|
let data: Vec<_> = (0..12).map(|i| i as f32).collect();
|
|
let y = Var::from_slice(&data, (2, 3, 2), device)?;
|
|
let c = x.matmul(&y)?;
|
|
let grads = c.backward()?;
|
|
let grad_x = grads.get(&x).context("no grad for x")?;
|
|
let grad_y = grads.get(&y).context("no grad for y")?;
|
|
assert_eq!(grad_x.shape(), &Shape::from((2, 2, 3)));
|
|
assert_eq!(grad_y.shape(), &Shape::from((2, 3, 2)));
|
|
assert_eq!(
|
|
&*grad_x.to_vec3::<f32>()?,
|
|
&[
|
|
[[1., 5., 9.], [1., 5., 9.]],
|
|
[[13., 17., 21.], [13., 17., 21.]]
|
|
]
|
|
);
|
|
assert_eq!(
|
|
&*grad_y.to_vec3::<f32>()?,
|
|
&[
|
|
[[3., 3.], [5., 5.], [7., 7.]],
|
|
[[15., 15.], [17., 17.], [19., 19.]]
|
|
]
|
|
);
|
|
Ok(())
|
|
}
|
|
|
|
// The simplest gradient descent, using scalar variable.
|
|
fn grad_descent(device: &Device) -> Result<()> {
|
|
let x = Var::new(0f32, device)?;
|
|
let learning_rate = 0.1;
|
|
for _step in 0..100 {
|
|
let xt = x.as_tensor();
|
|
let c = ((xt - 4.2)? * (xt - 4.2)?)?;
|
|
let grads = c.backward()?;
|
|
let x_grad = grads.get(&x).context("no grad for x")?;
|
|
x.set(&(xt - x_grad * learning_rate)?)?
|
|
}
|
|
assert_eq!(x.to_scalar::<f32>()?, 4.199999);
|
|
Ok(())
|
|
}
|
|
|
|
fn unary_grad(device: &Device) -> Result<()> {
|
|
let x = Var::new(&[3f32, 1., 4., 0.15], device)?;
|
|
let x = x.as_tensor();
|
|
let y = (x.log()? + 1.)?;
|
|
let grads = y.backward()?;
|
|
let grad_x = grads.get(x).context("no grad for x")?;
|
|
assert_eq!(y.to_vec1::<f32>()?, [2.0986123, 1.0, 2.3862944, -0.89712]);
|
|
assert_eq!(grad_x.to_vec1::<f32>()?, [0.33333334, 1.0, 0.25, 6.6666665]);
|
|
let y = x.exp()?;
|
|
let grads = y.backward()?;
|
|
let grad_x = grads.get(x).context("no grad for x")?;
|
|
assert_eq!(
|
|
y.to_vec1::<f32>()?,
|
|
[20.085537, 2.7182817, 54.59815, 1.1618342]
|
|
);
|
|
assert_eq!(
|
|
grad_x.to_vec1::<f32>()?,
|
|
[20.085537, 2.7182817, 54.59815, 1.1618342]
|
|
);
|
|
let y = x.exp()?.sqr()?;
|
|
let grads = y.backward()?;
|
|
let grad_x = grads.get(x).context("no grad for x")?;
|
|
assert_eq!(
|
|
y.to_vec1::<f32>()?,
|
|
[403.4288, 7.3890557, 2980.9578, 1.3498588]
|
|
);
|
|
// exp(x)^2 = exp(2*x)
|
|
assert_eq!(
|
|
grad_x.to_vec1::<f32>()?,
|
|
[806.8576, 14.778111, 5961.9155, 2.6997175]
|
|
);
|
|
let y = x.sin()?;
|
|
let grads = y.backward()?;
|
|
let grad_x = grads.get(x).context("no grad for x")?;
|
|
assert_eq!(
|
|
test_utils::to_vec1_round(&y, 4)?,
|
|
[0.1411, 0.8415, -0.7568, 0.1494],
|
|
);
|
|
assert_eq!(
|
|
test_utils::to_vec1_round(grad_x, 4)?,
|
|
[-0.99, 0.5403, -0.6536, 0.9888],
|
|
);
|
|
let y = x.cos()?;
|
|
let grads = y.backward()?;
|
|
let grad_x = grads.get(x).context("no grad for x")?;
|
|
assert_eq!(
|
|
test_utils::to_vec1_round(&y, 4)?,
|
|
[-0.99, 0.5403, -0.6536, 0.9888],
|
|
);
|
|
assert_eq!(
|
|
test_utils::to_vec1_round(grad_x, 4)?,
|
|
[-0.1411, -0.8415, 0.7568, -0.1494],
|
|
);
|
|
let y = x.sqr()?;
|
|
let grads = y.backward()?;
|
|
let grad_x = grads.get(x).context("no grad for x")?;
|
|
assert_eq!(y.to_vec1::<f32>()?, [9.0, 1.0, 16.0, 0.0225]);
|
|
assert_eq!(grad_x.to_vec1::<f32>()?, [6.0, 2.0, 8.0, 0.3]);
|
|
let y = x.sqr()?.sqrt()?;
|
|
let grads = y.backward()?;
|
|
let grad_x = grads.get(x).context("no grad for x")?;
|
|
assert_eq!(y.to_vec1::<f32>()?, [3.0, 1.0, 4.0, 0.15]);
|
|
assert_eq!(grad_x.to_vec1::<f32>()?, [1.0, 1.0, 1.0, 1.0]);
|
|
let y = x.neg()?;
|
|
let grads = y.backward()?;
|
|
let grad_x = grads.get(x).context("no grad for x")?;
|
|
assert_eq!(y.to_vec1::<f32>()?, [-3.0, -1.0, -4.0, -0.15]);
|
|
assert_eq!(grad_x.to_vec1::<f32>()?, [-1.0, -1.0, -1.0, -1.0]);
|
|
let y = x.affine(0.2, 1.)?;
|
|
let grads = y.backward()?;
|
|
let grad_x = grads.get(x).context("no grad for x")?;
|
|
assert_eq!(y.to_vec1::<f32>()?, [1.6, 1.2, 1.8, 1.03]);
|
|
assert_eq!(grad_x.to_vec1::<f32>()?, [0.2, 0.2, 0.2, 0.2]);
|
|
let y = Tensor::new(1f32, device)?.broadcast_div(x)?;
|
|
let grads = y.backward()?;
|
|
let grad_x = grads.get(x).context("no grad for x")?;
|
|
assert_eq!(y.to_vec1::<f32>()?, [0.33333334, 1.0, 0.25, 6.6666665]);
|
|
assert_eq!(
|
|
grad_x.to_vec1::<f32>()?,
|
|
[-0.11111111, -1.0, -0.0625, -44.444443],
|
|
);
|
|
let y = x.broadcast_div(&Tensor::new(0.5f32, device)?)?;
|
|
let grads = y.backward()?;
|
|
let grad_x = grads.get(x).context("no grad for x")?;
|
|
assert_eq!(y.to_vec1::<f32>()?, [6., 2., 8., 0.3]);
|
|
assert_eq!(grad_x.to_vec1::<f32>()?, [2., 2., 2., 2.]);
|
|
Ok(())
|
|
}
|
|
|
|
test_device!(simple_grad, simple_grad_cpu, simple_grad_gpu);
|
|
test_device!(sum_grad, sum_grad_cpu, sum_grad_gpu);
|
|
test_device!(matmul_grad, matmul_grad_cpu, matmul_grad_gpu);
|
|
test_device!(grad_descent, grad_descent_cpu, grad_descent_gpu);
|
|
test_device!(unary_grad, unary_grad_cpu, unary_grad_gpu);
|