mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00

* Simplify the safetensor usage. * Convert more examples. * Move more examples. * Adapt stable-diffusion.
99 lines
2.8 KiB
Rust
99 lines
2.8 KiB
Rust
//! EfficientNet implementation.
|
|
//!
|
|
//! https://arxiv.org/abs/1905.11946
|
|
|
|
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
use candle::{DType, IndexOp, D};
|
|
use candle_nn::{Module, VarBuilder};
|
|
use candle_transformers::models::efficientnet::{EfficientNet, MBConvConfig};
|
|
use clap::{Parser, ValueEnum};
|
|
|
|
#[derive(Clone, Copy, Debug, ValueEnum)]
|
|
enum Which {
|
|
B0,
|
|
B1,
|
|
B2,
|
|
B3,
|
|
B4,
|
|
B5,
|
|
B6,
|
|
B7,
|
|
}
|
|
|
|
#[derive(Parser)]
|
|
struct Args {
|
|
#[arg(long)]
|
|
model: Option<String>,
|
|
|
|
#[arg(long)]
|
|
image: String,
|
|
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// Variant of the model to use.
|
|
#[arg(value_enum, long, default_value_t = Which::B2)]
|
|
which: Which,
|
|
}
|
|
|
|
pub fn main() -> anyhow::Result<()> {
|
|
let args = Args::parse();
|
|
|
|
let device = candle_examples::device(args.cpu)?;
|
|
|
|
let image = candle_examples::imagenet::load_image224(args.image)?;
|
|
println!("loaded image {image:?}");
|
|
|
|
let model_file = match args.model {
|
|
None => {
|
|
let api = hf_hub::api::sync::Api::new()?;
|
|
let api = api.model("lmz/candle-efficientnet".into());
|
|
let filename = match args.which {
|
|
Which::B0 => "efficientnet-b0.safetensors",
|
|
Which::B1 => "efficientnet-b1.safetensors",
|
|
Which::B2 => "efficientnet-b2.safetensors",
|
|
Which::B3 => "efficientnet-b3.safetensors",
|
|
Which::B4 => "efficientnet-b4.safetensors",
|
|
Which::B5 => "efficientnet-b5.safetensors",
|
|
Which::B6 => "efficientnet-b6.safetensors",
|
|
Which::B7 => "efficientnet-b7.safetensors",
|
|
};
|
|
api.get(filename)?
|
|
}
|
|
Some(model) => model.into(),
|
|
};
|
|
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
|
|
let cfg = match args.which {
|
|
Which::B0 => MBConvConfig::b0(),
|
|
Which::B1 => MBConvConfig::b1(),
|
|
Which::B2 => MBConvConfig::b2(),
|
|
Which::B3 => MBConvConfig::b3(),
|
|
Which::B4 => MBConvConfig::b4(),
|
|
Which::B5 => MBConvConfig::b5(),
|
|
Which::B6 => MBConvConfig::b6(),
|
|
Which::B7 => MBConvConfig::b7(),
|
|
};
|
|
let model = EfficientNet::new(vb, cfg, candle_examples::imagenet::CLASS_COUNT as usize)?;
|
|
println!("model built");
|
|
let logits = model.forward(&image.unsqueeze(0)?)?;
|
|
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
|
|
.i(0)?
|
|
.to_vec1::<f32>()?;
|
|
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
|
|
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
|
|
for &(category_idx, pr) in prs.iter().take(5) {
|
|
println!(
|
|
"{:24}: {:.2}%",
|
|
candle_examples::imagenet::CLASSES[category_idx],
|
|
100. * pr
|
|
);
|
|
}
|
|
Ok(())
|
|
}
|