mirror of
https://github.com/huggingface/candle.git
synced 2025-06-18 19:47:12 +00:00
845 lines
27 KiB
Rust
845 lines
27 KiB
Rust
use crate::backend::{BackendDevice, BackendStorage};
|
|
use crate::conv::{ParamsConv1D, ParamsConv2D, ParamsConvTranspose1D, ParamsConvTranspose2D};
|
|
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
|
|
use crate::{CpuStorage, DType, Layout, Result, Shape};
|
|
use candle_metal_kernels;
|
|
use candle_metal_kernels::Kernels;
|
|
use core::mem;
|
|
use half::{bf16, f16};
|
|
use metal;
|
|
use metal::mps::matrix::encode_gemm;
|
|
use metal::mps::Float32;
|
|
use metal::{Buffer, CommandQueue, MTLResourceOptions, NSUInteger};
|
|
use std::sync::Arc;
|
|
|
|
/// Metal related errors
|
|
#[derive(thiserror::Error, Debug)]
|
|
pub enum MetalError {
|
|
#[error("{0}")]
|
|
Message(String),
|
|
#[error(transparent)]
|
|
KernelError(#[from] candle_metal_kernels::MetalKernelError),
|
|
}
|
|
|
|
impl From<String> for MetalError {
|
|
fn from(e: String) -> Self {
|
|
MetalError::Message(e)
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub struct MetalDevice {
|
|
device: metal::Device,
|
|
command_queue: metal::CommandQueue,
|
|
kernels: Arc<candle_metal_kernels::Kernels>,
|
|
}
|
|
|
|
impl std::fmt::Debug for MetalDevice {
|
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
write!(f, "MetalDevice({:?})", self.device.registry_id())
|
|
}
|
|
}
|
|
|
|
impl std::ops::Deref for MetalDevice {
|
|
type Target = metal::DeviceRef;
|
|
|
|
fn deref(&self) -> &Self::Target {
|
|
&self.device
|
|
}
|
|
}
|
|
|
|
impl MetalDevice {
|
|
// pub fn metal_device(&self) -> &metal::DeviceRef {
|
|
// self.device.as_ref()
|
|
// }
|
|
|
|
pub fn id(&self) -> u64 {
|
|
self.registry_id()
|
|
}
|
|
|
|
pub fn command_queue(&self) -> &CommandQueue {
|
|
&self.command_queue
|
|
}
|
|
|
|
pub fn kernels(&self) -> &Kernels {
|
|
&self.kernels
|
|
}
|
|
|
|
pub fn device(&self) -> &metal::Device {
|
|
&self.device
|
|
}
|
|
|
|
pub fn new_buffer(&self, element_count: usize, dtype: DType) -> Buffer {
|
|
let size = (element_count * dtype.size_in_bytes()) as u64;
|
|
// debug!("Allocate 1 - buffer size {size}");
|
|
self.device
|
|
.new_buffer(size, MTLResourceOptions::StorageModeManaged)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub struct MetalStorage {
|
|
buffer: metal::Buffer,
|
|
device: MetalDevice,
|
|
dtype: DType,
|
|
}
|
|
|
|
impl BackendStorage for MetalStorage {
|
|
type Device = MetalDevice;
|
|
|
|
fn try_clone(&self, _: &Layout) -> Result<Self> {
|
|
Ok(self.clone())
|
|
}
|
|
|
|
fn dtype(&self) -> DType {
|
|
self.dtype
|
|
}
|
|
|
|
fn device(&self) -> &Self::Device {
|
|
&self.device
|
|
}
|
|
|
|
fn to_cpu_storage(&self) -> Result<CpuStorage> {
|
|
// TODO Is this necessary
|
|
// self.buffer.synchronize();
|
|
match self.dtype {
|
|
DType::U8 => Ok(CpuStorage::U8(
|
|
self.buffer.read_to_vec(self.buffer.length() as usize / 1),
|
|
)),
|
|
DType::U32 => Ok(CpuStorage::U32(
|
|
self.buffer.read_to_vec(self.buffer.length() as usize / 4),
|
|
)),
|
|
DType::I64 => Ok(CpuStorage::I64(
|
|
self.buffer.read_to_vec(self.buffer.length() as usize / 8),
|
|
)),
|
|
DType::F16 => Ok(CpuStorage::F16(
|
|
self.buffer.read_to_vec(self.buffer.length() as usize / 2),
|
|
)),
|
|
DType::BF16 => Ok(CpuStorage::BF16(
|
|
self.buffer.read_to_vec(self.buffer.length() as usize / 2),
|
|
)),
|
|
DType::F32 => Ok(CpuStorage::F32(
|
|
self.buffer.read_to_vec(self.buffer.length() as usize / 4),
|
|
)),
|
|
DType::F64 => Ok(CpuStorage::F64(
|
|
self.buffer.read_to_vec(self.buffer.length() as usize / 8),
|
|
)),
|
|
}
|
|
}
|
|
|
|
fn affine(&self, layout: &Layout, mul: f64, add: f64) -> Result<Self> {
|
|
let device = self.device().clone();
|
|
|
|
let shape = layout.shape();
|
|
let el = shape.elem_count();
|
|
let dtype = self.dtype;
|
|
|
|
assert!(layout.is_contiguous());
|
|
assert_eq!(dtype, DType::F32);
|
|
|
|
let mut buffer = device.new_buffer(el, self.dtype);
|
|
let command_buffer = self.device.command_queue.new_command_buffer();
|
|
candle_metal_kernels::call_affine(
|
|
&device.device,
|
|
&command_buffer,
|
|
&device.kernels,
|
|
el,
|
|
&self.buffer,
|
|
&mut buffer,
|
|
mul as f32,
|
|
add as f32,
|
|
)
|
|
.unwrap();
|
|
command_buffer.commit();
|
|
command_buffer.wait_until_completed();
|
|
return Ok(Self {
|
|
buffer,
|
|
device: device.clone(),
|
|
dtype,
|
|
});
|
|
}
|
|
|
|
fn powf(&self, _: &Layout, _: f64) -> Result<Self> {
|
|
todo!()
|
|
}
|
|
|
|
fn elu(&self, _: &Layout, _: f64) -> Result<Self> {
|
|
todo!()
|
|
}
|
|
|
|
fn reduce_op(&self, op: ReduceOp, layout: &Layout, sum_dims: &[usize]) -> Result<Self> {
|
|
// debug!("TODO reduce_op {op:?} {sum_dims:?}");
|
|
assert!(sum_dims.len() == 1);
|
|
assert!(sum_dims[0] == layout.shape().rank() - 1);
|
|
assert!(layout.is_contiguous());
|
|
let device = self.device.clone();
|
|
let src_stride = layout.stride();
|
|
let src_dims = layout.shape().dims();
|
|
let src_el: usize = src_dims.iter().product();
|
|
// Source dims and strides with the sum dims at the end.
|
|
let mut dims = vec![];
|
|
let mut stride = vec![];
|
|
let mut dst_el: usize = 1;
|
|
for (dim_idx, &d) in src_dims.iter().enumerate() {
|
|
if !sum_dims.contains(&dim_idx) {
|
|
dst_el *= d;
|
|
dims.push(d);
|
|
stride.push(src_stride[dim_idx]);
|
|
}
|
|
}
|
|
for &dim_idx in sum_dims.iter() {
|
|
dims.push(src_dims[dim_idx]);
|
|
stride.push(src_stride[dim_idx]);
|
|
}
|
|
|
|
// The reduction loop requires the shared array to be properly initialized and for
|
|
// this we want the number of threads to be a power of two.
|
|
let (name, check_empty, return_index) = match (op, self.dtype) {
|
|
(ReduceOp::Sum, DType::F32) => ("fast_sum_float", false, false),
|
|
(ReduceOp::Min, DType::F32) => ("fast_min_float", true, false),
|
|
(ReduceOp::Max, DType::F32) => ("fast_max_float", true, false),
|
|
(ReduceOp::ArgMin, DType::F32) => ("fast_argmin_float", true, true),
|
|
(ReduceOp::ArgMax, DType::F32) => ("fast_argmax_float", true, true),
|
|
_ => todo!("Reduce op for non float"),
|
|
};
|
|
if check_empty && layout.shape().elem_count() == 0 {
|
|
Err(crate::Error::EmptyTensor { op: "reduce" }.bt())?
|
|
}
|
|
let dtype = if return_index { DType::U32 } else { self.dtype };
|
|
let mut buffer = device.new_buffer(dst_el, dtype);
|
|
let command_buffer = self.device.command_queue.new_command_buffer();
|
|
candle_metal_kernels::call_reduce_contiguous(
|
|
&device.device,
|
|
&command_buffer,
|
|
&device.kernels,
|
|
name,
|
|
src_el,
|
|
dst_el,
|
|
&self.buffer,
|
|
&mut buffer,
|
|
)
|
|
.map_err(MetalError::from)?;
|
|
command_buffer.commit();
|
|
command_buffer.wait_until_completed();
|
|
|
|
Ok(Self {
|
|
buffer,
|
|
device,
|
|
dtype,
|
|
})
|
|
}
|
|
|
|
fn cmp(&self, _: CmpOp, _: &Self, _: &Layout, _: &Layout) -> Result<Self> {
|
|
todo!()
|
|
}
|
|
|
|
fn to_dtype(&self, layout: &Layout, dtype: DType) -> Result<Self> {
|
|
let device = self.device();
|
|
let shape = layout.shape();
|
|
let el_count = shape.elem_count();
|
|
let mut buffer = device.new_buffer(el_count, dtype);
|
|
let command_buffer = device.command_queue.new_command_buffer();
|
|
if layout.is_contiguous() {
|
|
let kernel_name = match (self.dtype, dtype) {
|
|
(DType::U32, DType::F32) => "cast_u32_f32",
|
|
(left, right) => todo!("to dtype {left:?} - {right:?}"),
|
|
};
|
|
candle_metal_kernels::call_cast_contiguous(
|
|
&device.device,
|
|
&command_buffer,
|
|
&device.kernels,
|
|
kernel_name,
|
|
el_count,
|
|
&self.buffer,
|
|
&mut buffer,
|
|
)
|
|
.map_err(MetalError::from)?;
|
|
} else {
|
|
todo!(
|
|
"TODO Implement the kernel calling cast {:?}-{:?}",
|
|
self.dtype,
|
|
dtype
|
|
);
|
|
}
|
|
|
|
command_buffer.commit();
|
|
command_buffer.wait_until_completed();
|
|
// command_buffer.wait_until_scheduled();
|
|
// debug!(
|
|
// "cast {:?} - {:?} - {:?}",
|
|
// dtype,
|
|
// self.buffer.length(),
|
|
// buffer.length()
|
|
// );
|
|
Ok(Self {
|
|
buffer,
|
|
device: device.clone(),
|
|
dtype,
|
|
})
|
|
}
|
|
|
|
fn unary_impl<B: UnaryOpT>(&self, layout: &Layout) -> Result<Self> {
|
|
let device = self.device();
|
|
let dtype = self.dtype;
|
|
let shape = layout.shape();
|
|
let el_count = shape.elem_count();
|
|
let mut buffer = device.new_buffer(el_count, dtype);
|
|
let command_buffer = device.command_queue.new_command_buffer();
|
|
if layout.is_contiguous() {
|
|
use candle_metal_kernels::unary::contiguous;
|
|
|
|
let kernel_name = match (B::KERNEL, dtype) {
|
|
("ucos", DType::F32) => contiguous::cos::FLOAT,
|
|
("usin", DType::F32) => contiguous::sin::FLOAT,
|
|
("usqr", DType::F32) => contiguous::sqr::FLOAT,
|
|
("usqrt", DType::F32) => contiguous::sqrt::FLOAT,
|
|
("uneg", DType::F32) => contiguous::neg::FLOAT,
|
|
("uexp", DType::F32) => contiguous::exp::FLOAT,
|
|
(name, dtype) => todo!("Match {name} - {dtype:?}"),
|
|
};
|
|
candle_metal_kernels::call_unary_contiguous(
|
|
&device.device,
|
|
&command_buffer,
|
|
&device.kernels,
|
|
kernel_name,
|
|
el_count,
|
|
&self.buffer,
|
|
&mut buffer,
|
|
)
|
|
.map_err(MetalError::from)?;
|
|
} else {
|
|
todo!("TODO Implement the kernel calling {}", B::KERNEL);
|
|
}
|
|
command_buffer.commit();
|
|
command_buffer.wait_until_completed();
|
|
|
|
Ok(Self {
|
|
buffer,
|
|
device: device.clone(),
|
|
dtype,
|
|
})
|
|
}
|
|
|
|
fn binary_impl<B: BinaryOpT>(
|
|
&self,
|
|
rhs: &Self,
|
|
lhs_l: &Layout,
|
|
rhs_l: &Layout,
|
|
) -> Result<Self> {
|
|
let device = self.device();
|
|
let dtype = self.dtype;
|
|
let shape = lhs_l.shape();
|
|
let el_count = shape.elem_count();
|
|
let mut buffer = device.new_buffer(el_count, dtype);
|
|
let command_buffer = device.command_queue.new_command_buffer();
|
|
if lhs_l.is_contiguous() && rhs_l.is_contiguous() {
|
|
use candle_metal_kernels::binary::contiguous;
|
|
|
|
let kernel_name = match (B::KERNEL, dtype) {
|
|
("add", DType::F32) => contiguous::add::FLOAT,
|
|
("badd", DType::F32) => contiguous::add::FLOAT,
|
|
("sub", DType::F32) => contiguous::sub::FLOAT,
|
|
("bsub", DType::F32) => contiguous::sub::FLOAT,
|
|
("mul", DType::F32) => contiguous::mul::FLOAT,
|
|
("bmul", DType::F32) => contiguous::mul::FLOAT,
|
|
("div", DType::F32) => contiguous::div::FLOAT,
|
|
("bdiv", DType::F32) => contiguous::div::FLOAT,
|
|
(name, dtype) => todo!("Match {name} - {dtype:?}"),
|
|
};
|
|
candle_metal_kernels::call_binary_contiguous(
|
|
&device.device,
|
|
&command_buffer,
|
|
&device.kernels,
|
|
kernel_name,
|
|
el_count,
|
|
&self.buffer,
|
|
&rhs.buffer,
|
|
&mut buffer,
|
|
)
|
|
.map_err(MetalError::from)?;
|
|
} else {
|
|
use candle_metal_kernels::binary::strided;
|
|
|
|
let kernel_name = match (B::KERNEL, dtype) {
|
|
("badd", DType::F32) => strided::add::FLOAT,
|
|
("bsub", DType::F32) => strided::sub::FLOAT,
|
|
("bmul", DType::F32) => strided::mul::FLOAT,
|
|
("bdiv", DType::F32) => strided::div::FLOAT,
|
|
(name, dtype) => todo!("Match {name} - {dtype:?}"),
|
|
};
|
|
candle_metal_kernels::call_binary_strided(
|
|
&device.device,
|
|
&command_buffer,
|
|
&device.kernels,
|
|
kernel_name,
|
|
lhs_l.dims(),
|
|
&self.buffer,
|
|
&lhs_l.stride(),
|
|
lhs_l.start_offset(),
|
|
&rhs.buffer,
|
|
&rhs_l.stride(),
|
|
rhs_l.start_offset(),
|
|
&mut buffer,
|
|
)
|
|
.map_err(MetalError::from)?;
|
|
}
|
|
command_buffer.commit();
|
|
command_buffer.wait_until_completed();
|
|
|
|
Ok(Self {
|
|
buffer,
|
|
device: device.clone(),
|
|
dtype,
|
|
})
|
|
}
|
|
|
|
fn where_cond(
|
|
&self,
|
|
layout: &Layout,
|
|
t: &Self,
|
|
t_l: &Layout,
|
|
f: &Self,
|
|
f_l: &Layout,
|
|
) -> Result<Self> {
|
|
let device = self.device.clone();
|
|
let shape = t_l.shape();
|
|
let dims = shape.dims();
|
|
let el = shape.elem_count();
|
|
let dtype = t.dtype;
|
|
let mut buffer = self.device.new_buffer(el, dtype);
|
|
let command_buffer = self.device.command_queue.new_command_buffer();
|
|
candle_metal_kernels::call_where_cond_strided(
|
|
&device.device,
|
|
&command_buffer,
|
|
&device.kernels,
|
|
"where_u8_f32",
|
|
&dims,
|
|
&self.buffer,
|
|
(layout.stride(), layout.start_offset()),
|
|
&t.buffer,
|
|
(&t_l.stride(), t_l.start_offset()),
|
|
&f.buffer,
|
|
(&f_l.stride(), f_l.start_offset()),
|
|
&mut buffer,
|
|
)
|
|
.map_err(MetalError::from)?;
|
|
command_buffer.commit();
|
|
command_buffer.wait_until_completed();
|
|
Ok(Self {
|
|
buffer,
|
|
device,
|
|
dtype,
|
|
})
|
|
}
|
|
|
|
fn conv1d(
|
|
&self,
|
|
_l: &Layout,
|
|
_kernel: &Self,
|
|
_kernel_l: &Layout,
|
|
_params: &ParamsConv1D,
|
|
) -> Result<Self> {
|
|
todo!()
|
|
}
|
|
|
|
fn conv_transpose1d(
|
|
&self,
|
|
_l: &Layout,
|
|
_kernel: &Self,
|
|
_kernel_l: &Layout,
|
|
_params: &ParamsConvTranspose1D,
|
|
) -> Result<Self> {
|
|
todo!()
|
|
}
|
|
|
|
fn conv2d(
|
|
&self,
|
|
_l: &Layout,
|
|
_kernel: &Self,
|
|
_kernel_l: &Layout,
|
|
_params: &ParamsConv2D,
|
|
) -> Result<Self> {
|
|
todo!()
|
|
}
|
|
|
|
fn conv_transpose2d(
|
|
&self,
|
|
_l: &Layout,
|
|
_kernel: &Self,
|
|
_kernel_l: &Layout,
|
|
_params: &ParamsConvTranspose2D,
|
|
) -> Result<Self> {
|
|
todo!()
|
|
}
|
|
|
|
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
|
|
todo!()
|
|
}
|
|
|
|
fn max_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
|
|
todo!()
|
|
}
|
|
|
|
fn upsample_nearest1d(&self, _: &Layout, _: usize) -> Result<Self> {
|
|
todo!()
|
|
}
|
|
|
|
fn upsample_nearest2d(&self, _: &Layout, _: usize, _: usize) -> Result<Self> {
|
|
todo!()
|
|
}
|
|
|
|
fn gather(&self, _: &Layout, _: &Self, _: &Layout, _: usize) -> Result<Self> {
|
|
todo!()
|
|
}
|
|
|
|
fn scatter_add(
|
|
&self,
|
|
_: &Layout,
|
|
_: &Self,
|
|
_: &Layout,
|
|
_: &Self,
|
|
_: &Layout,
|
|
_: usize,
|
|
) -> Result<Self> {
|
|
todo!()
|
|
}
|
|
|
|
fn index_select(&self, ids: &Self, src_l: &Layout, ids_l: &Layout, dim: usize) -> Result<Self> {
|
|
assert!(src_l.is_contiguous());
|
|
assert!(ids_l.is_contiguous());
|
|
let left_size: usize = src_l.dims()[..dim].iter().product();
|
|
let right_size: usize = src_l.dims()[dim + 1..].iter().product();
|
|
let ids_el = ids_l.shape().elem_count();
|
|
let dst_el = ids_el * left_size * right_size;
|
|
let dtype = self.dtype;
|
|
let device = self.device();
|
|
let mut buffer = device.new_buffer(dst_el, dtype);
|
|
let out = self.to_cpu_storage().unwrap();
|
|
let name = match (ids.dtype, self.dtype) {
|
|
(DType::U32, DType::F32) => "is_u32_f32",
|
|
(left, right) => todo!("index select metal {left:?} {right:?}"),
|
|
};
|
|
let command_buffer = self.device.command_queue.new_command_buffer();
|
|
candle_metal_kernels::call_index_select(
|
|
&device.device,
|
|
&command_buffer,
|
|
&self.device.kernels,
|
|
name,
|
|
src_l.dims(),
|
|
ids_el,
|
|
dim,
|
|
&self.buffer,
|
|
&ids.buffer,
|
|
&mut buffer,
|
|
)
|
|
.map_err(MetalError::from)?;
|
|
command_buffer.commit();
|
|
command_buffer.wait_until_completed();
|
|
Ok(Self {
|
|
buffer,
|
|
device: device.clone(),
|
|
dtype,
|
|
})
|
|
}
|
|
|
|
fn index_add(
|
|
&self,
|
|
_: &Layout,
|
|
_: &Self,
|
|
_: &Layout,
|
|
_: &Self,
|
|
_: &Layout,
|
|
_: usize,
|
|
) -> Result<Self> {
|
|
todo!()
|
|
}
|
|
|
|
fn matmul(
|
|
&self,
|
|
rhs: &Self,
|
|
(b, m, n, k): (usize, usize, usize, usize),
|
|
lhs_l: &Layout,
|
|
rhs_l: &Layout,
|
|
) -> Result<Self> {
|
|
let transpose_left = false;
|
|
let transpose_right = !rhs_l.is_contiguous();
|
|
let alpha = 1.0;
|
|
let beta = 0.0;
|
|
self.matmul_generic(
|
|
rhs,
|
|
(b, m, n, k),
|
|
lhs_l,
|
|
rhs_l,
|
|
transpose_left,
|
|
transpose_right,
|
|
alpha,
|
|
beta,
|
|
)
|
|
}
|
|
|
|
fn copy_strided_src(&self, dst: &mut Self, dst_offset: usize, src_l: &Layout) -> Result<()> {
|
|
let src_shape = src_l.shape();
|
|
let el_count = src_shape.elem_count();
|
|
if el_count == 0 {
|
|
return Ok(());
|
|
}
|
|
// todo!("Copy strided {:?}", src_l.is_contiguous());
|
|
// if src_l.is_contiguous() {
|
|
// let command_buffer = self.device.command_queue.new_command_buffer();
|
|
// let blip = command_buffer.new_blit_command_encoder();
|
|
// blip.copy_from_buffer(
|
|
// &self.buffer,
|
|
// src_l.start_offset() as u64,
|
|
// &dst.buffer,
|
|
// dst_offset as u64,
|
|
// self.buffer.length(),
|
|
// );
|
|
// } else {
|
|
let command_buffer = self.device.command_queue.new_command_buffer();
|
|
let kernel_name = match self.dtype {
|
|
DType::F32 => candle_metal_kernels::unary::strided::copy::FLOAT,
|
|
DType::F16 => candle_metal_kernels::unary::strided::copy::HALF,
|
|
DType::BF16 => candle_metal_kernels::unary::strided::copy::BFLOAT,
|
|
dtype => todo!("copy_strided not implemented for {dtype:?}"),
|
|
};
|
|
candle_metal_kernels::call_unary_strided(
|
|
&self.device.device,
|
|
&command_buffer,
|
|
&self.device.kernels,
|
|
kernel_name,
|
|
src_l.dims(),
|
|
&self.buffer,
|
|
&src_l.stride(),
|
|
src_l.start_offset(),
|
|
&mut dst.buffer,
|
|
dst_offset,
|
|
)
|
|
.map_err(MetalError::from)?;
|
|
command_buffer.commit();
|
|
command_buffer.wait_until_completed();
|
|
// todo!("Output {:?}", dst.buffer.read_to_vec::<f32>(10));
|
|
// }
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl MetalStorage {
|
|
pub fn new(buffer: Buffer, device: MetalDevice, dtype: DType) -> Self {
|
|
Self {
|
|
buffer,
|
|
device,
|
|
dtype,
|
|
}
|
|
}
|
|
pub(crate) fn matmul_generic(
|
|
&self,
|
|
rhs: &Self,
|
|
(b, m, n, k): (usize, usize, usize, usize),
|
|
lhs_l: &Layout,
|
|
rhs_l: &Layout,
|
|
transpose_left: bool,
|
|
transpose_right: bool,
|
|
alpha: f64,
|
|
beta: f64,
|
|
) -> Result<Self> {
|
|
let elem_count = b * m * n;
|
|
match (self.dtype, rhs.dtype) {
|
|
(DType::F32, DType::F32) => {
|
|
let mut out_buffer = self.device.new_buffer(elem_count, self.dtype);
|
|
// if b != 1 {
|
|
// // debug!("TODO implement batched matmul for B={b}");
|
|
// crate::bail!("Didn't implemented strided matmul yet");
|
|
// return Ok(Self {
|
|
// buffer: out_buffer,
|
|
// device: self.device.clone(),
|
|
// dtype: self.dtype(),
|
|
// });
|
|
//}
|
|
// if !lhs_l.is_contiguous() || !rhs_l.is_contiguous() {
|
|
// // debug!(
|
|
// // "TODO non contiguous matmul yet {:?} {:?} - {:?} - {transpose_right}",
|
|
// // lhs_l.is_contiguous(),
|
|
// // rhs_l.is_contiguous(),
|
|
// // rhs_l
|
|
// // );
|
|
// crate::bail!("No not contiguous matmul");
|
|
// return Ok(Self {
|
|
// buffer: out_buffer,
|
|
// device: self.device.clone(),
|
|
// dtype: self.dtype(),
|
|
// });
|
|
// }
|
|
|
|
// debug!("TODO GEMM");
|
|
let command_buffer = self.device.command_queue.new_command_buffer();
|
|
encode_gemm::<Float32, Float32, Float32>(
|
|
&self.device,
|
|
&command_buffer,
|
|
transpose_left,
|
|
transpose_right,
|
|
&self.buffer,
|
|
&rhs.buffer,
|
|
&mut out_buffer,
|
|
m as NSUInteger,
|
|
n as NSUInteger,
|
|
k as NSUInteger,
|
|
alpha as f32,
|
|
beta as f32,
|
|
Some(b as NSUInteger),
|
|
)
|
|
.map_err(MetalError::from)?;
|
|
|
|
command_buffer.commit();
|
|
command_buffer.wait_until_completed();
|
|
// command_buffer.wait_until_scheduled();
|
|
//
|
|
let left = self.buffer.read_to_vec::<f32>(10);
|
|
let right = rhs.buffer.read_to_vec::<f32>(10);
|
|
let out = out_buffer.read_to_vec::<f32>(10);
|
|
|
|
println!("{b} {m} {n} {k} ");
|
|
println!("{left:?} {right:?} {out:?}");
|
|
|
|
Ok(Self {
|
|
buffer: out_buffer,
|
|
device: self.device.clone(),
|
|
dtype: self.dtype(),
|
|
})
|
|
}
|
|
_ => todo!("Unimplemented matmul for this pair"),
|
|
}
|
|
}
|
|
|
|
pub fn buffer(&self) -> &Buffer {
|
|
&self.buffer
|
|
}
|
|
}
|
|
|
|
impl BackendDevice for MetalDevice {
|
|
type Storage = MetalStorage;
|
|
|
|
fn new(ordinal: usize) -> Result<Self> {
|
|
let device = metal::Device::all().swap_remove(ordinal);
|
|
|
|
// let capture = metal::CaptureManager::shared();
|
|
// let descriptor = metal::CaptureDescriptor::new();
|
|
// descriptor.set_destination(metal::MTLCaptureDestination::GpuTraceDocument);
|
|
// descriptor.set_capture_device(&device);
|
|
// let mut dir = std::env::current_dir()?;
|
|
// dir.push("out.gputrace");
|
|
// descriptor.set_output_url(dir);
|
|
|
|
// capture
|
|
// .start_capture(&descriptor)
|
|
// .map_err(MetalError::from)?;
|
|
let command_queue = device.new_command_queue();
|
|
// let command_buffer = _command_queue.new_owned_command_buffer();
|
|
let kernels = Arc::new(Kernels::new());
|
|
Ok(Self {
|
|
device,
|
|
command_queue,
|
|
// command_buffer,
|
|
kernels,
|
|
})
|
|
}
|
|
|
|
fn set_seed(&self, _seed: u64) -> Result<()> {
|
|
todo!("set_seed")
|
|
}
|
|
|
|
fn location(&self) -> crate::DeviceLocation {
|
|
crate::DeviceLocation::Metal {
|
|
gpu_id: self.registry_id() as usize,
|
|
}
|
|
}
|
|
|
|
fn same_device(&self, rhs: &Self) -> bool {
|
|
self.device.registry_id() == rhs.device.registry_id()
|
|
}
|
|
|
|
fn zeros_impl(&self, shape: &Shape, dtype: DType) -> Result<MetalStorage> {
|
|
// TODO Is there a faster way ?
|
|
let cpu_storage = crate::cpu_backend::CpuDevice.zeros_impl(shape, dtype)?;
|
|
self.storage_from_cpu_storage(&cpu_storage)
|
|
}
|
|
|
|
fn ones_impl(&self, shape: &Shape, dtype: DType) -> Result<Self::Storage> {
|
|
// TODO Is there a faster way ?
|
|
let cpu_storage = crate::cpu_backend::CpuDevice.ones_impl(shape, dtype)?;
|
|
self.storage_from_cpu_storage(&cpu_storage)
|
|
}
|
|
|
|
fn storage_from_cpu_storage(&self, storage: &CpuStorage) -> Result<Self::Storage> {
|
|
let option = metal::MTLResourceOptions::StorageModeManaged;
|
|
let buffer = match storage {
|
|
CpuStorage::U8(storage) => self.device.new_buffer_with_data(
|
|
storage.as_ptr() as *const core::ffi::c_void,
|
|
(storage.len() * mem::size_of::<u8>()) as u64,
|
|
option,
|
|
),
|
|
CpuStorage::U32(storage) => self.device.new_buffer_with_data(
|
|
storage.as_ptr() as *const core::ffi::c_void,
|
|
(storage.len() * mem::size_of::<u32>()) as u64,
|
|
option,
|
|
),
|
|
CpuStorage::I64(storage) => self.device.new_buffer_with_data(
|
|
storage.as_ptr() as *const core::ffi::c_void,
|
|
(storage.len() * mem::size_of::<i64>()) as u64,
|
|
option,
|
|
),
|
|
CpuStorage::BF16(storage) => self.device.new_buffer_with_data(
|
|
storage.as_ptr() as *const core::ffi::c_void,
|
|
(storage.len() * mem::size_of::<bf16>()) as u64,
|
|
option,
|
|
),
|
|
CpuStorage::F16(storage) => self.device.new_buffer_with_data(
|
|
storage.as_ptr() as *const core::ffi::c_void,
|
|
(storage.len() * mem::size_of::<f16>()) as u64,
|
|
option,
|
|
),
|
|
CpuStorage::F32(storage) => self.device.new_buffer_with_data(
|
|
storage.as_ptr() as *const core::ffi::c_void,
|
|
(storage.len() * mem::size_of::<f32>()) as u64,
|
|
option,
|
|
),
|
|
CpuStorage::F64(storage) => self.device.new_buffer_with_data(
|
|
storage.as_ptr() as *const core::ffi::c_void,
|
|
(storage.len() * mem::size_of::<f64>()) as u64,
|
|
option,
|
|
),
|
|
};
|
|
// TODO is that necessary ?
|
|
// buffer.did_modify_range(metal::NSRange::new(0, buffer.length()));
|
|
// debug!("Allocate 2 - buffer size {}", buffer.length());
|
|
Ok(Self::Storage {
|
|
buffer,
|
|
device: self.clone(),
|
|
dtype: storage.dtype(),
|
|
})
|
|
}
|
|
|
|
fn rand_uniform(
|
|
&self,
|
|
shape: &Shape,
|
|
dtype: DType,
|
|
mean: f64,
|
|
stddev: f64,
|
|
) -> Result<Self::Storage> {
|
|
// TODO is there a better way ?
|
|
let cpu_storage = crate::cpu_backend::CpuDevice.rand_uniform(shape, dtype, mean, stddev)?;
|
|
self.storage_from_cpu_storage(&cpu_storage)
|
|
}
|
|
|
|
fn rand_normal(
|
|
&self,
|
|
shape: &Shape,
|
|
dtype: DType,
|
|
mean: f64,
|
|
stddev: f64,
|
|
) -> Result<Self::Storage> {
|
|
// TODO is there a better way ?
|
|
let cpu_storage = crate::cpu_backend::CpuDevice.rand_normal(shape, dtype, mean, stddev)?;
|
|
self.storage_from_cpu_storage(&cpu_storage)
|
|
}
|
|
}
|