mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 19:58:35 +00:00

* Add the SNAC audio tokenizer. * More snac. * Again more snac. * Add some example code for snac. * Get the weights to load. * Add to the snac model. * Fixes. * Get round-tripping to work. * Save/load code files. * Clippy fix. * Fmt fix.
815 lines
23 KiB
Rust
815 lines
23 KiB
Rust
#![allow(unused)]
|
|
//! Implementation of the Multi-Scale Neural Audio Codec (SNAC)
|
|
//!
|
|
//! See: [SNAC](https://github.com/hubertsiuzdak/snac)
|
|
//!
|
|
/// Multi-Scale Neural Audio Codec (SNAC) compresses audio into discrete codes at a low bitrate.
|
|
/// For more information, read the paper: https://arxiv.org/abs/2410.14411
|
|
///
|
|
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
|
|
use candle_nn::{
|
|
linear_b, Conv1d, Conv1dConfig, ConvTranspose1d, ConvTranspose1dConfig, LayerNorm, Linear,
|
|
VarBuilder,
|
|
};
|
|
|
|
#[derive(serde::Deserialize, Debug, Clone)]
|
|
pub struct Config {
|
|
pub sampling_rate: usize,
|
|
pub encoder_dim: usize,
|
|
pub encoder_rates: Vec<usize>,
|
|
pub decoder_dim: usize,
|
|
pub decoder_rates: Vec<usize>,
|
|
pub attn_window_size: Option<usize>,
|
|
pub codebook_size: usize,
|
|
pub codebook_dim: usize,
|
|
pub vq_strides: Vec<usize>,
|
|
pub noise: bool,
|
|
pub depthwise: bool,
|
|
}
|
|
|
|
// Equivalent to torch.repeat_interleave
|
|
pub fn repeat_interleave<D: candle::shape::Dim>(
|
|
img: &Tensor,
|
|
repeats: usize,
|
|
dim: D,
|
|
) -> Result<Tensor> {
|
|
if repeats == 1 {
|
|
return Ok(img.clone());
|
|
}
|
|
let dim = dim.to_index(img.shape(), "chunk")?;
|
|
let img = img.unsqueeze(dim + 1)?;
|
|
let mut dims = img.dims().to_vec();
|
|
dims[dim + 1] = repeats;
|
|
img.broadcast_as(dims)?.flatten(dim, dim + 1)
|
|
}
|
|
|
|
pub fn conv1d_weight_norm(
|
|
in_c: usize,
|
|
out_c: usize,
|
|
kernel_size: usize,
|
|
config: candle_nn::Conv1dConfig,
|
|
vb: VarBuilder,
|
|
) -> Result<Conv1d> {
|
|
let weight_g = vb.get((out_c, 1, 1), "parametrizations.weight.original0")?;
|
|
let weight_v = {
|
|
let name = "parametrizations.weight.original1";
|
|
match vb.get((out_c, in_c, kernel_size), name) {
|
|
Ok(v) => v,
|
|
Err(_) => vb.get((out_c, 1, kernel_size), name)?,
|
|
}
|
|
};
|
|
let norm_v = weight_v.sqr()?.sum_keepdim((1, 2))?.sqrt()?;
|
|
let weight = weight_v.broadcast_mul(&weight_g)?.broadcast_div(&norm_v)?;
|
|
let bias = vb.get(out_c, "bias")?;
|
|
Ok(Conv1d::new(weight, Some(bias), config))
|
|
}
|
|
|
|
pub fn conv1d_weight_norm_no_bias(
|
|
in_c: usize,
|
|
out_c: usize,
|
|
kernel_size: usize,
|
|
config: candle_nn::Conv1dConfig,
|
|
vb: VarBuilder,
|
|
) -> Result<Conv1d> {
|
|
let weight_g = vb.get((out_c, 1, 1), "parametrizations.weight.original0")?;
|
|
let weight_v = {
|
|
let name = "parametrizations.weight.original1";
|
|
match vb.get((out_c, in_c, kernel_size), name) {
|
|
Ok(v) => v,
|
|
Err(_) => vb.get((out_c, 1, kernel_size), name)?,
|
|
}
|
|
};
|
|
let norm_v = weight_v.sqr()?.sum_keepdim((1, 2))?.sqrt()?;
|
|
let weight = weight_v.broadcast_mul(&weight_g)?.broadcast_div(&norm_v)?;
|
|
Ok(Conv1d::new(weight, None, config))
|
|
}
|
|
|
|
pub fn conv_transpose1d_weight_norm(
|
|
in_c: usize,
|
|
out_c: usize,
|
|
kernel_size: usize,
|
|
bias: bool,
|
|
config: candle_nn::ConvTranspose1dConfig,
|
|
vb: VarBuilder,
|
|
) -> Result<ConvTranspose1d> {
|
|
let weight_g = vb.get((in_c, 1, 1), "parametrizations.weight.original0")?;
|
|
let weight_v = vb.get(
|
|
(in_c, out_c, kernel_size),
|
|
"parametrizations.weight.original1",
|
|
)?;
|
|
let norm_v = weight_v.sqr()?.sum_keepdim((1, 2))?.sqrt()?;
|
|
let weight = weight_v.broadcast_mul(&weight_g)?.broadcast_div(&norm_v)?;
|
|
let bias = if bias {
|
|
Some(vb.get(out_c, "bias")?)
|
|
} else {
|
|
None
|
|
};
|
|
Ok(ConvTranspose1d::new(weight, bias, config))
|
|
}
|
|
|
|
// https://github.com/hubertsiuzdak/snac/blob/main/snac/attention.py
|
|
#[allow(unused)]
|
|
#[derive(Debug, Clone)]
|
|
struct SinusoidalEmbeddings {
|
|
inv_freq: Tensor,
|
|
scale: Tensor,
|
|
scale_base: f32,
|
|
use_xpos: bool,
|
|
}
|
|
|
|
impl SinusoidalEmbeddings {
|
|
fn new(dim: usize, scale_base: f32, use_xpos: bool, dev: &Device) -> Result<Self> {
|
|
let inv_freq: Vec<_> = (0..dim)
|
|
.step_by(2)
|
|
.map(|i| 1f32 / 10_000f32.powf(i as f32 / dim as f32))
|
|
.collect();
|
|
let len = inv_freq.len();
|
|
let inv_freq = Tensor::from_vec(inv_freq, len, dev)?.to_dtype(DType::F32)?;
|
|
let scale: Vec<_> = (0..dim)
|
|
.step_by(2)
|
|
.map(|i| (i as f32 + 0.4 * dim as f32) / (1.4 * dim as f32))
|
|
.collect();
|
|
let scale = Tensor::from_vec(scale, len, dev)?.to_dtype(DType::F32)?;
|
|
Ok(Self {
|
|
inv_freq,
|
|
scale,
|
|
scale_base,
|
|
use_xpos,
|
|
})
|
|
}
|
|
}
|
|
|
|
#[allow(unused)]
|
|
#[derive(Debug, Clone)]
|
|
struct LocalMHA {
|
|
norm: LayerNorm,
|
|
to_qkv: Linear,
|
|
to_out: Linear,
|
|
num_heads: usize,
|
|
head_dim: usize,
|
|
rel_pos: Option<SinusoidalEmbeddings>,
|
|
}
|
|
|
|
impl LocalMHA {
|
|
fn new(
|
|
dim: usize,
|
|
window_size: usize,
|
|
dim_head: usize,
|
|
use_rotary_pos_emb: bool,
|
|
vb: VarBuilder,
|
|
) -> Result<Self> {
|
|
let norm = candle_nn::layer_norm(dim, 1e-5, vb.pp("norm"))?;
|
|
let to_qkv = linear_b(dim, dim * 3, false, vb.pp("to_qkv"))?;
|
|
let to_out = linear_b(dim, dim, false, vb.pp("to_out"))?;
|
|
let rel_pos = if use_rotary_pos_emb {
|
|
let rel_pos =
|
|
SinusoidalEmbeddings::new(dim_head, window_size as f32 / 2.0, false, vb.device())?;
|
|
Some(rel_pos)
|
|
} else {
|
|
None
|
|
};
|
|
Ok(Self {
|
|
norm,
|
|
to_qkv,
|
|
to_out,
|
|
rel_pos,
|
|
num_heads: dim / dim_head,
|
|
head_dim: dim_head,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Module for LocalMHA {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let (b, c, t) = xs.dims3()?;
|
|
let residual = xs.clone();
|
|
let xs = xs.transpose(1, 2)?.apply(&self.norm)?;
|
|
let qkv = xs.apply(&self.to_qkv)?;
|
|
let q = qkv.narrow(D::Minus1, 0, c)?;
|
|
let k = qkv.narrow(D::Minus1, c, c)?;
|
|
let v = qkv.narrow(D::Minus1, 2 * c, c)?;
|
|
let q = q
|
|
.reshape((b, t, self.num_heads, self.head_dim))?
|
|
.transpose(1, 2)?
|
|
.contiguous()?;
|
|
let k = k
|
|
.reshape((b, t, self.num_heads, self.head_dim))?
|
|
.transpose(1, 2)?
|
|
.contiguous()?;
|
|
let v = v
|
|
.reshape((b, t, self.num_heads, self.head_dim))?
|
|
.transpose(1, 2)?
|
|
.contiguous()?;
|
|
let (q, k) = match self.rel_pos {
|
|
Some(_) => todo!(),
|
|
None => (q, k),
|
|
};
|
|
let out = {
|
|
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
|
|
let attn_weights = (q.matmul(&k.transpose(2, 3)?)? * scale)?;
|
|
// Non-causal attention
|
|
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
|
|
attn_weights.matmul(&v)?
|
|
};
|
|
let out = out
|
|
.transpose(1, 2)?
|
|
.reshape((b, t, self.num_heads * self.head_dim))?
|
|
.apply(&self.to_out)?;
|
|
out.transpose(1, 2)? + residual
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct Snake1d {
|
|
alpha: Tensor,
|
|
}
|
|
|
|
impl Snake1d {
|
|
pub fn new(channels: usize, vb: VarBuilder) -> Result<Self> {
|
|
let alpha = vb.get((1, channels, 1), "alpha")?;
|
|
Ok(Self { alpha })
|
|
}
|
|
}
|
|
|
|
impl Module for Snake1d {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let xs_shape = xs.shape();
|
|
let xs = xs.flatten_from(2)?;
|
|
let sin = self.alpha.broadcast_mul(&xs)?.sin()?;
|
|
let sin = (&sin * &sin)?;
|
|
(xs + (&self.alpha + 1e-9)?.recip()?.broadcast_mul(&sin)?)?.reshape(xs_shape)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct ResidualUnit {
|
|
snake1: Snake1d,
|
|
conv1: Conv1d,
|
|
snake2: Snake1d,
|
|
conv2: Conv1d,
|
|
}
|
|
|
|
impl ResidualUnit {
|
|
fn new(
|
|
dim: usize,
|
|
dilation: usize,
|
|
kernel: usize,
|
|
groups: usize,
|
|
vb: VarBuilder,
|
|
) -> Result<Self> {
|
|
let pad = ((kernel - 1) * dilation) / 2;
|
|
let vb = vb.pp("block");
|
|
let snake1 = Snake1d::new(dim, vb.pp(0))?;
|
|
let cfg1 = Conv1dConfig {
|
|
dilation,
|
|
padding: pad,
|
|
groups,
|
|
..Default::default()
|
|
};
|
|
let conv1 = conv1d_weight_norm(dim, dim, 7, cfg1, vb.pp(1))?;
|
|
let snake2 = Snake1d::new(dim, vb.pp(2))?;
|
|
let conv2 = conv1d_weight_norm(dim, dim, 1, Default::default(), vb.pp(3))?;
|
|
Ok(Self {
|
|
snake1,
|
|
conv1,
|
|
snake2,
|
|
conv2,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Module for ResidualUnit {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let ys = xs
|
|
.apply(&self.snake1)?
|
|
.apply(&self.conv1)?
|
|
.apply(&self.snake2)?
|
|
.apply(&self.conv2)?;
|
|
let pad = (xs.dim(D::Minus1)? - ys.dim(D::Minus1)?) / 2;
|
|
if pad > 0 {
|
|
&ys + xs.narrow(D::Minus1, pad, ys.dim(D::Minus1)?)
|
|
} else {
|
|
ys + xs
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct NoiseBlock {
|
|
linear: Conv1d,
|
|
}
|
|
|
|
impl NoiseBlock {
|
|
fn new(dim: usize, vb: VarBuilder) -> Result<Self> {
|
|
let linear = conv1d_weight_norm_no_bias(dim, dim, 1, Default::default(), vb.pp("linear"))?;
|
|
Ok(Self { linear })
|
|
}
|
|
}
|
|
|
|
impl Module for NoiseBlock {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let (b, _c, t) = xs.dims3()?;
|
|
let noise = Tensor::randn(0f32, 1f32, (b, 1, t), xs.device())?;
|
|
let h = xs.apply(&self.linear)?;
|
|
let n = noise.broadcast_mul(&h)?;
|
|
let xs = (xs + n)?;
|
|
Ok(xs)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct DecoderBlock {
|
|
snake1: Snake1d,
|
|
conv_tr1: ConvTranspose1d,
|
|
noise: Option<NoiseBlock>,
|
|
res1: ResidualUnit,
|
|
res2: ResidualUnit,
|
|
res3: ResidualUnit,
|
|
}
|
|
|
|
impl DecoderBlock {
|
|
fn new(
|
|
in_dim: usize,
|
|
out_dim: usize,
|
|
stride: usize,
|
|
noise: bool,
|
|
groups: usize,
|
|
vb: VarBuilder,
|
|
) -> Result<Self> {
|
|
let vb = vb.pp("block");
|
|
let snake1 = Snake1d::new(in_dim, vb.pp(0))?;
|
|
let cfg = ConvTranspose1dConfig {
|
|
stride,
|
|
padding: stride.div_ceil(2),
|
|
output_padding: stride % 2,
|
|
..Default::default()
|
|
};
|
|
let conv_tr1 =
|
|
conv_transpose1d_weight_norm(in_dim, out_dim, 2 * stride, true, cfg, vb.pp(1))?;
|
|
let (n, noise) = if noise {
|
|
let noise = NoiseBlock::new(out_dim, vb.pp(2))?;
|
|
(1, Some(noise))
|
|
} else {
|
|
(0, None)
|
|
};
|
|
let res1 = ResidualUnit::new(out_dim, 1, 7, groups, vb.pp(2 + n))?;
|
|
let res2 = ResidualUnit::new(out_dim, 3, 7, groups, vb.pp(3 + n))?;
|
|
let res3 = ResidualUnit::new(out_dim, 9, 7, groups, vb.pp(4 + n))?;
|
|
Ok(Self {
|
|
snake1,
|
|
conv_tr1,
|
|
noise,
|
|
res1,
|
|
res2,
|
|
res3,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Module for DecoderBlock {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
xs.apply(&self.snake1)?
|
|
.apply(&self.conv_tr1)?
|
|
.apply(&self.noise.as_ref())?
|
|
.apply(&self.res1)?
|
|
.apply(&self.res2)?
|
|
.apply(&self.res3)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct EncoderBlock {
|
|
res1: ResidualUnit,
|
|
res2: ResidualUnit,
|
|
res3: ResidualUnit,
|
|
snake1: Snake1d,
|
|
conv1: Conv1d,
|
|
}
|
|
|
|
impl EncoderBlock {
|
|
fn new(
|
|
out_dim: usize,
|
|
in_dim: Option<usize>,
|
|
stride: usize,
|
|
groups: usize,
|
|
vb: VarBuilder,
|
|
) -> Result<Self> {
|
|
let vb = vb.pp("block");
|
|
let in_dim = in_dim.unwrap_or(out_dim / 2);
|
|
let res1 = ResidualUnit::new(in_dim, 1, 7, groups, vb.pp(0))?;
|
|
let res2 = ResidualUnit::new(in_dim, 3, 7, groups, vb.pp(1))?;
|
|
let res3 = ResidualUnit::new(in_dim, 9, 7, groups, vb.pp(2))?;
|
|
let snake1 = Snake1d::new(in_dim, vb.pp(3))?;
|
|
let cfg1 = Conv1dConfig {
|
|
stride,
|
|
padding: stride.div_ceil(2),
|
|
..Default::default()
|
|
};
|
|
let conv1 = conv1d_weight_norm(in_dim, out_dim, 2 * stride, cfg1, vb.pp(4))?;
|
|
Ok(Self {
|
|
res1,
|
|
res2,
|
|
res3,
|
|
snake1,
|
|
conv1,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl candle::Module for EncoderBlock {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
xs.apply(&self.res1)?
|
|
.apply(&self.res2)?
|
|
.apply(&self.res3)?
|
|
.apply(&self.snake1)?
|
|
.apply(&self.conv1)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub struct Encoder {
|
|
conv1: Conv1d,
|
|
blocks: Vec<EncoderBlock>,
|
|
local_mha: Option<LocalMHA>,
|
|
conv2: Conv1d,
|
|
}
|
|
|
|
impl candle::Module for Encoder {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let mut xs = xs.apply(&self.conv1)?;
|
|
for block in self.blocks.iter() {
|
|
xs = xs.apply(block)?
|
|
}
|
|
xs.apply(&self.conv2)
|
|
}
|
|
}
|
|
|
|
impl Encoder {
|
|
fn new(
|
|
mut d_model: usize,
|
|
strides: &[usize],
|
|
depthwise: bool,
|
|
attn_window_size: Option<usize>,
|
|
vb: VarBuilder,
|
|
) -> Result<Self> {
|
|
let vb = vb.pp("block");
|
|
let mut idx = 0;
|
|
let cfg1 = Conv1dConfig {
|
|
padding: 3,
|
|
..Default::default()
|
|
};
|
|
let conv1 = conv1d_weight_norm(1, d_model, 7, cfg1, vb.pp(idx))?;
|
|
idx += 1;
|
|
let mut blocks = Vec::with_capacity(strides.len());
|
|
for &stride in strides.iter() {
|
|
d_model *= 2;
|
|
let groups = if depthwise { d_model / 2 } else { 1 };
|
|
let block = EncoderBlock::new(d_model, None, stride, groups, vb.pp(idx))?;
|
|
idx += 1;
|
|
blocks.push(block)
|
|
}
|
|
let local_mha = match attn_window_size {
|
|
Some(w) => {
|
|
let mha = LocalMHA::new(d_model, w, 64, true, vb.pp(idx))?;
|
|
idx += 1;
|
|
Some(mha)
|
|
}
|
|
None => None,
|
|
};
|
|
let groups = if depthwise { d_model } else { 1 };
|
|
let cfg2 = Conv1dConfig {
|
|
padding: 3,
|
|
groups,
|
|
..Default::default()
|
|
};
|
|
let conv2 = conv1d_weight_norm(d_model, d_model, 7, cfg2, vb.pp(idx))?;
|
|
idx += 1;
|
|
Ok(Self {
|
|
conv1,
|
|
blocks,
|
|
local_mha,
|
|
conv2,
|
|
})
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
enum ConvInit {
|
|
Depthwise(Conv1d, Conv1d),
|
|
Standard(Conv1d),
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub struct Decoder {
|
|
conv1: ConvInit,
|
|
local_mha: Option<LocalMHA>,
|
|
blocks: Vec<DecoderBlock>,
|
|
snake1: Snake1d,
|
|
conv2: Conv1d,
|
|
}
|
|
|
|
impl Decoder {
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn new(
|
|
in_c: usize,
|
|
mut channels: usize,
|
|
rates: &[usize],
|
|
noise: bool,
|
|
depthwise: bool,
|
|
attn_window_size: Option<usize>,
|
|
d_out: usize,
|
|
vb: VarBuilder,
|
|
) -> Result<Self> {
|
|
let vb = vb.pp("model");
|
|
let mut idx = 0;
|
|
let pad3 = Conv1dConfig {
|
|
padding: 3,
|
|
..Default::default()
|
|
};
|
|
let conv1 = if depthwise {
|
|
let cfg1 = Conv1dConfig {
|
|
padding: 3,
|
|
groups: in_c,
|
|
..Default::default()
|
|
};
|
|
let conv1 = conv1d_weight_norm(in_c, in_c, 7, cfg1, vb.pp(idx))?;
|
|
idx += 1;
|
|
let conv2 = conv1d_weight_norm(in_c, channels, 1, Default::default(), vb.pp(idx))?;
|
|
idx += 1;
|
|
ConvInit::Depthwise(conv1, conv2)
|
|
} else {
|
|
let conv1 = conv1d_weight_norm(in_c, channels, 7, pad3, vb.pp(idx))?;
|
|
idx += 1;
|
|
ConvInit::Standard(conv1)
|
|
};
|
|
let mut blocks = Vec::with_capacity(rates.len());
|
|
let local_mha = match attn_window_size {
|
|
Some(w) => {
|
|
let mha = LocalMHA::new(channels, w, 64, true, vb.pp(idx))?;
|
|
idx += 1;
|
|
Some(mha)
|
|
}
|
|
None => None,
|
|
};
|
|
for stride in rates.iter() {
|
|
let groups = if depthwise { channels / 2 } else { 1 };
|
|
let block =
|
|
DecoderBlock::new(channels, channels / 2, *stride, noise, groups, vb.pp(idx))?;
|
|
idx += 1;
|
|
channels /= 2;
|
|
blocks.push(block)
|
|
}
|
|
let snake1 = Snake1d::new(channels, vb.pp(idx))?;
|
|
idx += 1;
|
|
let conv2 = conv1d_weight_norm(channels, d_out, 7, pad3, vb.pp(idx))?;
|
|
idx += 1;
|
|
Ok(Self {
|
|
conv1,
|
|
local_mha,
|
|
blocks,
|
|
snake1,
|
|
conv2,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl candle::Module for Decoder {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let mut xs = match &self.conv1 {
|
|
ConvInit::Standard(c) => xs.apply(c)?,
|
|
ConvInit::Depthwise(c1, c2) => xs.apply(c1)?.apply(c2)?,
|
|
};
|
|
for block in self.blocks.iter() {
|
|
xs = xs.apply(block)?
|
|
}
|
|
xs.apply(&self.snake1)?.apply(&self.conv2)
|
|
}
|
|
}
|
|
|
|
fn normalize(v: &Tensor) -> Result<Tensor> {
|
|
v.broadcast_div(&v.sqr()?.sum_keepdim(1)?.sqrt()?)
|
|
}
|
|
|
|
// https://github.com/hubertsiuzdak/snac/blob/main/snac/vq.py
|
|
#[allow(unused)]
|
|
#[derive(Clone, Debug)]
|
|
struct VectorQuantizer {
|
|
in_proj: Conv1d,
|
|
out_proj: Conv1d,
|
|
codebook: candle_nn::Embedding,
|
|
stride: usize,
|
|
}
|
|
|
|
impl VectorQuantizer {
|
|
fn new(
|
|
in_dim: usize,
|
|
cb_size: usize,
|
|
cb_dim: usize,
|
|
stride: usize,
|
|
vb: VarBuilder,
|
|
) -> Result<Self> {
|
|
let in_proj = conv1d_weight_norm(in_dim, cb_dim, 1, Default::default(), vb.pp("in_proj"))?;
|
|
let out_proj =
|
|
conv1d_weight_norm(cb_dim, in_dim, 1, Default::default(), vb.pp("out_proj"))?;
|
|
let codebook = candle_nn::embedding(cb_size, cb_dim, vb.pp("codebook"))?;
|
|
Ok(Self {
|
|
in_proj,
|
|
out_proj,
|
|
codebook,
|
|
stride,
|
|
})
|
|
}
|
|
|
|
fn decode_latents(&self, latents: &Tensor) -> Result<(Tensor, Tensor)> {
|
|
let (b, d, t) = latents.dims3()?;
|
|
let encodings = latents.transpose(1, 2)?.reshape((b * t, d))?;
|
|
let encodings = normalize(&encodings)?;
|
|
let codebook = normalize(self.codebook.embeddings())?;
|
|
let dist = (encodings
|
|
.sqr()?
|
|
.sum_keepdim(1)?
|
|
.broadcast_sub(&encodings.matmul(&codebook.t()?)?)?
|
|
* 2.0)?
|
|
.broadcast_add(&codebook.sqr()?.sum_keepdim(1)?.t()?)?;
|
|
let indices = dist.argmin(1)?.reshape((b, ()))?;
|
|
let z_q = self.decode_code(&indices)?;
|
|
Ok((z_q, indices))
|
|
}
|
|
|
|
fn encode(&self, z: &Tensor) -> Result<(Tensor, Tensor)> {
|
|
let z = if self.stride > 1 {
|
|
let (b, c, t) = z.dims3()?;
|
|
z.reshape((b, c, 1, t))?
|
|
.avg_pool2d((1, self.stride))?
|
|
.squeeze(2)?
|
|
} else {
|
|
z.clone()
|
|
};
|
|
let z_e = z.apply(&self.in_proj)?;
|
|
let (z_q, indices) = self.decode_latents(&z_e)?;
|
|
let z_q = z_q.apply(&self.out_proj)?;
|
|
let z_q = if self.stride > 1 {
|
|
repeat_interleave(&z_q, self.stride, D::Minus1)?
|
|
} else {
|
|
z_q
|
|
};
|
|
Ok((z_q, indices))
|
|
}
|
|
|
|
fn embed_code(&self, embed_id: &Tensor) -> Result<Tensor> {
|
|
embed_id.apply(&self.codebook)
|
|
}
|
|
|
|
fn decode_code(&self, embed_id: &Tensor) -> Result<Tensor> {
|
|
self.embed_code(embed_id)?.transpose(1, 2)
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct ResidualVectorQuantizer {
|
|
quantizers: Vec<VectorQuantizer>,
|
|
}
|
|
|
|
impl ResidualVectorQuantizer {
|
|
fn new(
|
|
input_dim: usize,
|
|
cb_size: usize,
|
|
cb_dim: usize,
|
|
vq_strides: &[usize],
|
|
vb: VarBuilder,
|
|
) -> Result<Self> {
|
|
let vb = &vb.pp("quantizers");
|
|
let quantizers = vq_strides
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, stride)| VectorQuantizer::new(input_dim, cb_size, cb_dim, *stride, vb.pp(i)))
|
|
.collect::<Result<Vec<_>>>()?;
|
|
Ok(Self { quantizers })
|
|
}
|
|
|
|
fn encode(&self, z: &Tensor) -> Result<(Tensor, Vec<Tensor>)> {
|
|
let mut residual = z.clone();
|
|
let mut z_q = z.zeros_like()?;
|
|
let mut codes = Vec::with_capacity(self.quantizers.len());
|
|
for quantizer in self.quantizers.iter() {
|
|
let (z_q_i, indices_i) = quantizer.encode(&residual)?;
|
|
z_q = (z_q + &z_q_i)?;
|
|
residual = (residual - &z_q_i)?;
|
|
codes.push(indices_i)
|
|
}
|
|
Ok((z_q, codes))
|
|
}
|
|
|
|
#[allow(clippy::wrong_self_convention)]
|
|
fn from_codes(&self, codes: &[&Tensor]) -> Result<Tensor> {
|
|
let mut sum = None;
|
|
for (quantizer, codes) in self.quantizers.iter().zip(codes.iter()) {
|
|
let z_p_i = quantizer.decode_code(codes)?;
|
|
let z_q_i = z_p_i.apply(&quantizer.out_proj)?;
|
|
let z_q_i = repeat_interleave(&z_q_i, quantizer.stride, D::Minus1)?;
|
|
let s = match sum {
|
|
None => z_q_i,
|
|
Some(s) => (s + z_q_i)?,
|
|
};
|
|
sum = Some(s)
|
|
}
|
|
match sum {
|
|
Some(s) => Ok(s),
|
|
None => candle::bail!("empty codebooks"),
|
|
}
|
|
}
|
|
}
|
|
|
|
fn gcd(mut a: usize, mut b: usize) -> usize {
|
|
while b != 0 {
|
|
let t = b;
|
|
b = a % b;
|
|
a = t;
|
|
}
|
|
a
|
|
}
|
|
|
|
fn lcm(a: usize, b: usize) -> usize {
|
|
a / gcd(a, b) * b
|
|
}
|
|
|
|
// https://github.com/hubertsiuzdak/snac/blob/main/snac/snac.py
|
|
#[derive(Debug, Clone)]
|
|
pub struct Model {
|
|
pub encoder: Encoder,
|
|
pub quantizer: ResidualVectorQuantizer,
|
|
pub decoder: Decoder,
|
|
pub hop_length: usize,
|
|
pub config: Config,
|
|
}
|
|
|
|
impl Model {
|
|
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let encoder = Encoder::new(
|
|
cfg.encoder_dim,
|
|
&cfg.encoder_rates,
|
|
cfg.depthwise,
|
|
cfg.attn_window_size,
|
|
vb.pp("encoder"),
|
|
)?;
|
|
let latent_dim = cfg.encoder_dim * 2usize.pow(cfg.encoder_rates.len() as u32);
|
|
let quantizer = ResidualVectorQuantizer::new(
|
|
latent_dim,
|
|
cfg.codebook_size,
|
|
cfg.codebook_dim,
|
|
&cfg.vq_strides,
|
|
vb.pp("quantizer"),
|
|
)?;
|
|
let decoder = Decoder::new(
|
|
latent_dim,
|
|
cfg.decoder_dim,
|
|
&cfg.decoder_rates,
|
|
cfg.noise,
|
|
cfg.depthwise,
|
|
cfg.attn_window_size,
|
|
/* d_out */ 1,
|
|
vb.pp("decoder"),
|
|
)?;
|
|
let hop_length = cfg.encoder_rates.iter().product::<usize>();
|
|
Ok(Self {
|
|
encoder,
|
|
decoder,
|
|
quantizer,
|
|
config: cfg.clone(),
|
|
hop_length,
|
|
})
|
|
}
|
|
|
|
fn preprocess(&self, audio_data: &Tensor) -> Result<Tensor> {
|
|
let len = audio_data.dim(D::Minus1)?;
|
|
let lcm = lcm(
|
|
self.config.vq_strides[0],
|
|
self.config.attn_window_size.unwrap_or(1),
|
|
);
|
|
let pad_to = self.hop_length * lcm;
|
|
let right_pad = len.div_ceil(pad_to) * pad_to - len;
|
|
let audio_data = audio_data.pad_with_zeros(D::Minus1, 0, right_pad)?;
|
|
Ok(audio_data)
|
|
}
|
|
|
|
pub fn encode(&self, audio_data: &Tensor) -> Result<Vec<Tensor>> {
|
|
let audio_data = self.preprocess(audio_data)?;
|
|
let z = self.encoder.forward(&audio_data)?;
|
|
let (_, codes) = self.quantizer.encode(&z)?;
|
|
Ok(codes)
|
|
}
|
|
|
|
pub fn decode(&self, audio_codes: &[&Tensor]) -> Result<Tensor> {
|
|
let audio_values = self.quantizer.from_codes(audio_codes)?;
|
|
audio_values.apply(&self.decoder)
|
|
}
|
|
|
|
pub fn config(&self) -> &Config {
|
|
&self.config
|
|
}
|
|
|
|
pub fn num_codebooks(&self) -> usize {
|
|
self.quantizer.quantizers.len()
|
|
}
|
|
}
|