Files
candle/candle-examples/examples/wuerstchen/main.rs
Laurent Mazare 5f83c13f17 Add the DDPM scheduler. (#877)
* Add the DDPM scheduler.

* Minor tweaks.
2023-09-17 15:03:01 +01:00

335 lines
11 KiB
Rust

#![allow(unused)]
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
use candle_transformers::models::stable_diffusion;
use candle_transformers::models::wuerstchen;
use anyhow::{Error as E, Result};
use candle::{DType, Device, IndexOp, Module, Tensor, D};
use clap::Parser;
use tokenizers::Tokenizer;
const GUIDANCE_SCALE: f64 = 7.5;
const RESOLUTION_MULTIPLE: f64 = 42.67;
#[derive(Parser)]
#[command(author, version, about, long_about = None)]
struct Args {
/// The prompt to be used for image generation.
#[arg(
long,
default_value = "A very realistic photo of a rusty robot walking on a sandy beach"
)]
prompt: String,
#[arg(long, default_value = "")]
uncond_prompt: String,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
/// The height in pixels of the generated image.
#[arg(long)]
height: Option<usize>,
/// The width in pixels of the generated image.
#[arg(long)]
width: Option<usize>,
/// The decoder weight file, in .safetensors format.
#[arg(long, value_name = "FILE")]
decoder_weights: Option<String>,
/// The CLIP weight file, in .safetensors format.
#[arg(long, value_name = "FILE")]
clip_weights: Option<String>,
/// The prior weight file, in .safetensors format.
#[arg(long, value_name = "FILE")]
prior_weights: Option<String>,
/// The VQGAN weight file, in .safetensors format.
#[arg(long, value_name = "FILE")]
vqgan_weights: Option<String>,
#[arg(long, value_name = "FILE")]
/// The file specifying the tokenizer to used for tokenization.
tokenizer: Option<String>,
/// The size of the sliced attention or 0 for automatic slicing (disabled by default)
#[arg(long)]
sliced_attention_size: Option<usize>,
/// The number of steps to run the diffusion for.
#[arg(long, default_value_t = 30)]
n_steps: usize,
/// The number of samples to generate.
#[arg(long, default_value_t = 1)]
num_samples: i64,
/// The name of the final image to generate.
#[arg(long, value_name = "FILE", default_value = "sd_final.png")]
final_image: String,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum ModelFile {
Tokenizer,
Clip,
Decoder,
VqGan,
Prior,
}
impl ModelFile {
fn get(&self, filename: Option<String>) -> Result<std::path::PathBuf> {
use hf_hub::api::sync::Api;
match filename {
Some(filename) => Ok(std::path::PathBuf::from(filename)),
None => {
let repo_main = "warp-ai/wuerstchen";
let repo_prior = "warp-ai/wuerstchen-prior";
let (repo, path) = match self {
Self::Tokenizer => (repo_main, "tokenizer/tokenizer.json"),
Self::Clip => (repo_main, "text_encoder/model.safetensors"),
Self::Decoder => (repo_main, "decoder/diffusion_pytorch_model.safetensors"),
Self::VqGan => (repo_main, "vqgan/diffusion_pytorch_model.safetensors"),
Self::Prior => (repo_prior, "prior/diffusion_pytorch_model.safetensors"),
};
let filename = Api::new()?.model(repo.to_string()).get(path)?;
Ok(filename)
}
}
}
}
fn output_filename(
basename: &str,
sample_idx: i64,
num_samples: i64,
timestep_idx: Option<usize>,
) -> String {
let filename = if num_samples > 1 {
match basename.rsplit_once('.') {
None => format!("{basename}.{sample_idx}.png"),
Some((filename_no_extension, extension)) => {
format!("{filename_no_extension}.{sample_idx}.{extension}")
}
}
} else {
basename.to_string()
};
match timestep_idx {
None => filename,
Some(timestep_idx) => match filename.rsplit_once('.') {
None => format!("{filename}-{timestep_idx}.png"),
Some((filename_no_extension, extension)) => {
format!("{filename_no_extension}-{timestep_idx}.{extension}")
}
},
}
}
fn encode_prompt(
prompt: &str,
uncond_prompt: &str,
tokenizer: Option<String>,
clip_weights: Option<String>,
clip_config: stable_diffusion::clip::Config,
device: &Device,
) -> Result<Tensor> {
let tokenizer = ModelFile::Tokenizer.get(tokenizer)?;
let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?;
let pad_id = match &clip_config.pad_with {
Some(padding) => *tokenizer.get_vocab(true).get(padding.as_str()).unwrap(),
None => *tokenizer.get_vocab(true).get("<|endoftext|>").unwrap(),
};
println!("Running with prompt \"{prompt}\".");
let mut tokens = tokenizer
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
while tokens.len() < clip_config.max_position_embeddings {
tokens.push(pad_id)
}
let tokens = Tensor::new(tokens.as_slice(), device)?.unsqueeze(0)?;
let mut uncond_tokens = tokenizer
.encode(uncond_prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
while uncond_tokens.len() < clip_config.max_position_embeddings {
uncond_tokens.push(pad_id)
}
let uncond_tokens = Tensor::new(uncond_tokens.as_slice(), device)?.unsqueeze(0)?;
println!("Building the Clip transformer.");
let clip_weights = ModelFile::Clip.get(clip_weights)?;
let text_model =
stable_diffusion::build_clip_transformer(&clip_config, clip_weights, device, DType::F32)?;
let text_embeddings = text_model.forward(&tokens)?;
let uncond_embeddings = text_model.forward(&uncond_tokens)?;
let text_embeddings = Tensor::cat(&[uncond_embeddings, text_embeddings], 0)?;
Ok(text_embeddings)
}
fn run(args: Args) -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let Args {
prompt,
uncond_prompt,
cpu,
height,
width,
n_steps,
tokenizer,
final_image,
sliced_attention_size,
num_samples,
clip_weights,
prior_weights,
vqgan_weights,
decoder_weights,
tracing,
..
} = args;
let _guard = if tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
let device = candle_examples::device(cpu)?;
let height = height.unwrap_or(1024);
let width = width.unwrap_or(1024);
let text_embeddings = encode_prompt(
&prompt,
&uncond_prompt,
tokenizer.clone(),
clip_weights.clone(),
stable_diffusion::clip::Config::wuerstchen(),
&device,
)?;
println!("{text_embeddings:?}");
println!("Building the prior.");
// https://huggingface.co/warp-ai/wuerstchen-prior/blob/main/prior/config.json
let prior = {
let prior_weights = ModelFile::Prior.get(prior_weights)?;
let weights = unsafe { candle::safetensors::MmapedFile::new(prior_weights)? };
let weights = weights.deserialize()?;
let vb = candle_nn::VarBuilder::from_safetensors(vec![weights], DType::F32, &device);
wuerstchen::prior::WPrior::new(
/* c_in */ 16, /* c */ 1536, /* c_cond */ 1280, /* c_r */ 64,
/* depth */ 32, /* nhead */ 24, vb,
)?
};
println!("Building the vqgan.");
let _vqgan = {
let vqgan_weights = ModelFile::VqGan.get(vqgan_weights)?;
let weights = unsafe { candle::safetensors::MmapedFile::new(vqgan_weights)? };
let weights = weights.deserialize()?;
let vb = candle_nn::VarBuilder::from_safetensors(vec![weights], DType::F32, &device);
wuerstchen::paella_vq::PaellaVQ::new(vb)?
};
println!("Building the decoder.");
// https://huggingface.co/warp-ai/wuerstchen/blob/main/decoder/config.json
let _decoder = {
let decoder_weights = ModelFile::Decoder.get(decoder_weights)?;
let weights = unsafe { candle::safetensors::MmapedFile::new(decoder_weights)? };
let weights = weights.deserialize()?;
let vb = candle_nn::VarBuilder::from_safetensors(vec![weights], DType::F32, &device);
wuerstchen::diffnext::WDiffNeXt::new(
/* c_in */ 4, /* c_out */ 4, /* c_r */ 64, /* c_cond */ 1024,
/* clip_embd */ 1024, /* patch_size */ 2, vb,
)?
};
let latent_height = (height as f64 / RESOLUTION_MULTIPLE).ceil() as usize;
let latent_width = (width as f64 / RESOLUTION_MULTIPLE).ceil() as usize;
let b_size = 1;
for idx in 0..num_samples {
let latents = Tensor::randn(
0f32,
1f32,
(b_size, 4, latent_height, latent_width),
&device,
)?;
// TODO: latents denoising loop, use the scheduler values.
let ratio = Tensor::ones(1, DType::F32, &device)?;
let prior = prior.forward(&latents, &ratio, &text_embeddings)?;
let latents = ((latents * 42.)? - 1.)?;
/*
let timesteps = scheduler.timesteps();
let latents = Tensor::randn(
0f32,
1f32,
(bsize, 4, sd_config.height / 8, sd_config.width / 8),
&device,
)?;
// scale the initial noise by the standard deviation required by the scheduler
let mut latents = latents * scheduler.init_noise_sigma()?;
println!("starting sampling");
for (timestep_index, &timestep) in timesteps.iter().enumerate() {
let start_time = std::time::Instant::now();
let latent_model_input = Tensor::cat(&[&latents, &latents], 0)?;
let latent_model_input = scheduler.scale_model_input(latent_model_input, timestep)?;
let noise_pred =
decoder.forward(&latent_model_input, timestep as f64, &text_embeddings)?;
let noise_pred = noise_pred.chunk(2, 0)?;
let (noise_pred_uncond, noise_pred_text) = (&noise_pred[0], &noise_pred[1]);
let noise_pred =
(noise_pred_uncond + ((noise_pred_text - noise_pred_uncond)? * GUIDANCE_SCALE)?)?;
latents = scheduler.step(&noise_pred, timestep, &latents)?;
let dt = start_time.elapsed().as_secs_f32();
println!("step {}/{n_steps} done, {:.2}s", timestep_index + 1, dt);
}
*/
println!(
"Generating the final image for sample {}/{}.",
idx + 1,
num_samples
);
/*
let image = vae.decode(&(&latents / 0.18215)?)?;
// TODO: Add the clamping between 0 and 1.
let image = ((image / 2.)? + 0.5)?.to_device(&Device::Cpu)?;
let image = (image * 255.)?.to_dtype(DType::U8)?.i(0)?;
let image_filename = output_filename(&final_image, idx + 1, num_samples, None);
candle_examples::save_image(&image, image_filename)?
*/
}
Ok(())
}
fn main() -> Result<()> {
let args = Args::parse();
run(args)
}