mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
408 lines
14 KiB
Rust
408 lines
14 KiB
Rust
// https://github.com/karpathy/llama2.c
|
|
#![allow(dead_code)]
|
|
#![allow(unused)]
|
|
|
|
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
mod model;
|
|
use clap::{Parser, Subcommand};
|
|
|
|
use anyhow::{Error as E, Result};
|
|
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
|
|
use candle::{DType, Device, Error, IndexOp, Layout, Shape, Tensor};
|
|
use candle_nn::{Embedding, Linear, VarBuilder};
|
|
use candle_transformers::generation::LogitsProcessor;
|
|
use std::io::Write;
|
|
use tokenizers::Tokenizer;
|
|
|
|
use model::{Config, Llama};
|
|
|
|
struct TransformerWeights {
|
|
// token embedding table
|
|
token_embedding_table: Tensor, // (vocab_size, dim)
|
|
// weights for rmsnorms
|
|
rms_att_weight: Tensor, // (layer, dim) rmsnorm weights
|
|
rms_ffn_weight: Tensor, // (layer, dim)
|
|
// weights for matmuls
|
|
wq: Tensor, // (layer, dim, dim)
|
|
wk: Tensor, // (layer, dim, dim)
|
|
wv: Tensor, // (layer, dim, dim)
|
|
wo: Tensor, // (layer, dim, dim)
|
|
// weights for ffn
|
|
w1: Tensor, // (layer, hidden_dim, dim)
|
|
w2: Tensor, // (layer, dim, hidden_dim)
|
|
w3: Tensor, // (layer, hidden_dim, dim)
|
|
// final rmsnorm
|
|
rms_final_weight: Tensor, // (dim,)
|
|
// freq_cis for RoPE relatively positional embeddings
|
|
freq_cis_real: Tensor, // (seq_len, head_size/2)
|
|
freq_cis_imag: Tensor, // (seq_len, head_size/2)
|
|
}
|
|
|
|
fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> {
|
|
let mut buf = [0u8; 4];
|
|
r.read_exact(&mut buf)?;
|
|
Ok(i32::from_le_bytes(buf))
|
|
}
|
|
|
|
fn read_tensor<R: std::io::Read, S: Into<Shape>>(
|
|
r: &mut R,
|
|
shape: S,
|
|
dev: &Device,
|
|
) -> Result<Tensor> {
|
|
let shape = shape.into();
|
|
let mut data_t = vec![0f32; shape.elem_count()];
|
|
r.read_f32_into::<LittleEndian>(&mut data_t)?;
|
|
let tensor = Tensor::from_vec(data_t, shape, dev)?;
|
|
Ok(tensor)
|
|
}
|
|
|
|
impl Config {
|
|
fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> {
|
|
let dim = read_i32(r)? as usize;
|
|
let hidden_dim = read_i32(r)? as usize;
|
|
let n_layers = read_i32(r)? as usize;
|
|
let n_heads = read_i32(r)? as usize;
|
|
let n_kv_heads = read_i32(r)? as usize;
|
|
let vocab_size = read_i32(r)? as usize;
|
|
let seq_len = read_i32(r)? as usize;
|
|
Ok(Self {
|
|
dim,
|
|
hidden_dim,
|
|
n_layers,
|
|
n_heads,
|
|
n_kv_heads,
|
|
vocab_size,
|
|
seq_len,
|
|
norm_eps: 1e-5,
|
|
})
|
|
}
|
|
|
|
fn head_size(&self) -> usize {
|
|
self.dim / self.n_heads
|
|
}
|
|
}
|
|
|
|
impl TransformerWeights {
|
|
fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> {
|
|
let token_embedding_table = read_tensor(r, (c.vocab_size, c.dim), dev)?;
|
|
let rms_att_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
|
|
let wq = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
let wk = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
let wv = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
let wo = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
let rms_ffn_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
|
|
let w1 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
|
let w2 = read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?;
|
|
let w3 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
|
let rms_final_weight = read_tensor(r, c.dim, dev)?;
|
|
let head_size = c.head_size();
|
|
let freq_cis_real = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
|
let freq_cis_imag = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
|
Ok(Self {
|
|
token_embedding_table,
|
|
rms_att_weight,
|
|
wq,
|
|
wk,
|
|
wv,
|
|
wo,
|
|
rms_ffn_weight,
|
|
w1,
|
|
w2,
|
|
w3,
|
|
rms_final_weight,
|
|
freq_cis_real,
|
|
freq_cis_imag,
|
|
})
|
|
}
|
|
|
|
fn var_builder(&self, cfg: &Config, device: &Device) -> Result<VarBuilder> {
|
|
let mut ws = std::collections::HashMap::new();
|
|
let mut insert = |name: &str, t: Tensor| {
|
|
ws.insert(name.to_string(), t);
|
|
};
|
|
insert("rot.freq_cis_real", self.freq_cis_real.clone());
|
|
insert("rot.freq_cis_imag", self.freq_cis_imag.clone());
|
|
insert(
|
|
"model.embed_tokens.weight",
|
|
self.token_embedding_table.clone(),
|
|
);
|
|
insert("lm_head.weight", self.token_embedding_table.clone());
|
|
insert("model.norm.weight", self.rms_final_weight.clone());
|
|
for layer in 0..cfg.n_layers {
|
|
ws.insert(
|
|
format!("model.layers.{layer}.self_attn.q_proj.weight"),
|
|
self.wq.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.self_attn.k_proj.weight"),
|
|
self.wk.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.self_attn.v_proj.weight"),
|
|
self.wv.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.self_attn.o_proj.weight"),
|
|
self.wo.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.mlp.gate_proj.weight"),
|
|
self.w1.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.mlp.down_proj.weight"),
|
|
self.w2.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.mlp.up_proj.weight"),
|
|
self.w3.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.input_layernorm.weight"),
|
|
self.rms_att_weight.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.post_attention_layernorm.weight"),
|
|
self.rms_ffn_weight.i(layer)?,
|
|
);
|
|
}
|
|
let vb = VarBuilder::from_tensors(ws, DType::F32, device);
|
|
Ok(vb)
|
|
}
|
|
}
|
|
|
|
#[derive(Parser, Debug, Clone)]
|
|
struct InferenceCmd {
|
|
/// The temperature used to generate samples.
|
|
#[arg(long)]
|
|
temperature: Option<f64>,
|
|
|
|
#[arg(long, default_value = "")]
|
|
prompt: String,
|
|
|
|
/// Config file in binary format.
|
|
#[arg(long)]
|
|
config: Option<String>,
|
|
|
|
#[arg(long, default_value = "karpathy/tinyllamas")]
|
|
model_id: String,
|
|
|
|
/// The model to be used when getting it from the hub. Possible
|
|
/// values are 'stories15M.bin', 'stories42M.bin', see more at:
|
|
/// https://huggingface.co/karpathy/tinyllamas/tree/main
|
|
#[arg(long, default_value = "stories15M.bin")]
|
|
which_model: String,
|
|
}
|
|
|
|
#[derive(Parser, Debug, Clone)]
|
|
struct EvaluationCmd {
|
|
/// A directory with the pre-tokenized dataset in the format generated by the tinystories.py
|
|
/// script from llama2.c https://github.com/karpathy/llama2.c
|
|
#[arg(long)]
|
|
pretokenized_dir: Option<String>,
|
|
|
|
#[arg(long, default_value_t = 32)]
|
|
batch_size: usize,
|
|
|
|
/// Config file in binary format.
|
|
#[arg(long)]
|
|
config: Option<String>,
|
|
|
|
#[arg(long, default_value = "karpathy/tinyllamas")]
|
|
model_id: String,
|
|
|
|
/// The model to be used when getting it from the hub. Possible
|
|
/// values are 'stories15M.bin', 'stories42M.bin', see more at:
|
|
/// https://huggingface.co/karpathy/tinyllamas/tree/main
|
|
#[arg(long, default_value = "stories15M.bin")]
|
|
which_model: String,
|
|
}
|
|
|
|
#[derive(Subcommand, Debug, Clone)]
|
|
enum Task {
|
|
Inference(InferenceCmd),
|
|
Evaluation(EvaluationCmd),
|
|
Training,
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// The task to be performed, inference, training or evaluation.
|
|
#[command(subcommand)]
|
|
task: Task,
|
|
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// Tokenizer config file.
|
|
#[arg(long)]
|
|
tokenizer: Option<String>,
|
|
}
|
|
|
|
impl Args {
|
|
fn tokenizer(&self) -> Result<Tokenizer> {
|
|
let tokenizer_path = match &self.tokenizer {
|
|
Some(config) => std::path::PathBuf::from(config),
|
|
None => {
|
|
let api = hf_hub::api::sync::Api::new()?;
|
|
let api = api.model("hf-internal-testing/llama-tokenizer".to_string());
|
|
api.get("tokenizer.json")?
|
|
}
|
|
};
|
|
Tokenizer::from_file(tokenizer_path).map_err(E::msg)
|
|
}
|
|
}
|
|
|
|
fn main() -> anyhow::Result<()> {
|
|
let args = Args::parse();
|
|
match &args.task {
|
|
Task::Inference(cmd) => run_inference(cmd, &args)?,
|
|
Task::Evaluation(cmd) => run_eval(cmd, &args)?,
|
|
Task::Training => todo!(),
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn run_eval(args: &EvaluationCmd, common_args: &Args) -> Result<()> {
|
|
use std::io::BufRead;
|
|
|
|
let config_path = match &args.config {
|
|
Some(config) => std::path::PathBuf::from(config),
|
|
None => {
|
|
let api = hf_hub::api::sync::Api::new()?;
|
|
println!("loading the model weights from {}", args.model_id);
|
|
let api = api.model(args.model_id.clone());
|
|
api.get(&args.which_model)?
|
|
}
|
|
};
|
|
|
|
let tokenizer = common_args.tokenizer()?;
|
|
|
|
let device = candle_examples::device(common_args.cpu)?;
|
|
let mut file = std::fs::File::open(config_path)?;
|
|
let config = Config::from_reader(&mut file)?;
|
|
let weights = TransformerWeights::from_reader(&mut file, &config, &device)?;
|
|
let vb = weights.var_builder(&config, &device)?;
|
|
let cache = model::Cache::new(false, &config, vb.pp("rot"))?;
|
|
let model = Llama::load(vb, &cache, config)?;
|
|
|
|
let tokens = match &args.pretokenized_dir {
|
|
None => {
|
|
let api = hf_hub::api::sync::Api::new()?;
|
|
let model_id = "roneneldan/TinyStories"; // TODO: Make this configurable.
|
|
println!("loading the evaluation dataset from {}", model_id);
|
|
let api = api.dataset(model_id.to_string());
|
|
let dataset_path = api.get("TinyStories-valid.txt")?;
|
|
let file = std::fs::File::open(dataset_path)?;
|
|
let file = std::io::BufReader::new(file);
|
|
let mut tokens = vec![];
|
|
for line in file.lines() {
|
|
let line = line?.replace("<|endoftext|>", "<s>");
|
|
let line = tokenizer.encode(line, false).map_err(E::msg)?;
|
|
tokens.push(line.get_ids().to_vec())
|
|
}
|
|
tokens.concat()
|
|
}
|
|
Some(pretokenized_dir) => {
|
|
let path = std::path::PathBuf::from(pretokenized_dir).join("data00.bin");
|
|
let bytes = std::fs::read(path)?;
|
|
// Tokens are encoded as u16.
|
|
let mut tokens = vec![0u16; bytes.len() / 2];
|
|
std::io::Cursor::new(bytes).read_u16_into::<LittleEndian>(&mut tokens)?;
|
|
tokens.into_iter().map(|u| u as u32).collect::<Vec<u32>>()
|
|
}
|
|
};
|
|
println!("dataset loaded and encoded: {} tokens", tokens.len());
|
|
|
|
let seq_len = model.config.seq_len;
|
|
let iter = (0..tokens.len()).step_by(seq_len).flat_map(|start_idx| {
|
|
if start_idx + seq_len + 1 > tokens.len() {
|
|
None
|
|
} else {
|
|
let tokens = &tokens[start_idx..start_idx + seq_len + 1];
|
|
let inputs = Tensor::new(&tokens[..seq_len], &device);
|
|
let targets = Tensor::new(&tokens[1..], &device);
|
|
Some(inputs.and_then(|inputs| targets.map(|targets| (inputs, targets))))
|
|
}
|
|
});
|
|
let batch_iter = candle_nn::dataset::Batcher::new_r2(iter).batch_size(args.batch_size);
|
|
for inp_tgt in batch_iter {
|
|
let (inp, tgt) = inp_tgt?;
|
|
let logits = model.forward(&inp, 0)?;
|
|
let loss = candle_nn::loss::cross_entropy(&logits.flatten_to(1)?, &tgt.flatten_to(1)?)?;
|
|
println!("{}", loss.to_vec0::<f32>()?);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
|
|
let config_path = match &args.config {
|
|
Some(config) => std::path::PathBuf::from(config),
|
|
None => {
|
|
let api = hf_hub::api::sync::Api::new()?;
|
|
println!("loading the model weights from {}", args.model_id);
|
|
let api = api.model(args.model_id.clone());
|
|
api.get(&args.which_model)?
|
|
}
|
|
};
|
|
|
|
let tokenizer = common_args.tokenizer()?;
|
|
|
|
let device = candle_examples::device(common_args.cpu)?;
|
|
|
|
let mut file = std::fs::File::open(config_path)?;
|
|
let config = Config::from_reader(&mut file)?;
|
|
let weights = TransformerWeights::from_reader(&mut file, &config, &device)?;
|
|
let vb = weights.var_builder(&config, &device)?;
|
|
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
|
|
let model = Llama::load(vb, &cache, config)?;
|
|
|
|
println!("starting the inference loop");
|
|
let mut logits_processor = LogitsProcessor::new(299792458, args.temperature);
|
|
let mut index_pos = 0;
|
|
|
|
print!("{}", args.prompt);
|
|
let mut tokens = tokenizer
|
|
.encode(args.prompt.clone(), true)
|
|
.map_err(E::msg)?
|
|
.get_ids()
|
|
.to_vec();
|
|
|
|
let start_gen = std::time::Instant::now();
|
|
for index in 0.. {
|
|
if tokens.len() >= model.config.seq_len {
|
|
break;
|
|
}
|
|
let start_gen = std::time::Instant::now();
|
|
let context_size = if index > 0 { 1 } else { tokens.len() };
|
|
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
|
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
|
|
let logits = model.forward(&input, index_pos)?;
|
|
let logits = logits.i((0, logits.dim(1)? - 1))?;
|
|
index_pos += ctxt.len();
|
|
|
|
let next_token = logits_processor.sample(&logits)?;
|
|
tokens.push(next_token);
|
|
// Extracting the last token as a string is complicated, here we just apply some simple
|
|
// heuristics as it seems to work well enough for this example. See the following for more
|
|
// details:
|
|
// https://github.com/huggingface/tokenizers/issues/1141#issuecomment-1562644141
|
|
if let Some(text) = tokenizer.id_to_token(next_token) {
|
|
let text = text.replace('▁', " ").replace("<0x0A>", "\n");
|
|
print!("{text}");
|
|
std::io::stdout().flush()?;
|
|
}
|
|
}
|
|
let dt = start_gen.elapsed();
|
|
println!(
|
|
"\n{} tokens generated ({:.2} token/s)\n",
|
|
tokens.len(),
|
|
tokens.len() as f64 / dt.as_secs_f64(),
|
|
);
|
|
Ok(())
|
|
}
|