Files
candle/candle-transformers/src/models/xlm_roberta.rs

548 lines
18 KiB
Rust

use crate::models::with_tracing::{linear, Linear};
use candle::{DType, Module, Result, Tensor};
use candle_nn::{
embedding, layer_norm, ops::softmax_last_dim, Activation, Embedding, LayerNorm, VarBuilder,
};
#[derive(Debug, Clone, serde::Deserialize)]
pub struct Config {
pub hidden_size: usize,
pub layer_norm_eps: f64,
pub attention_probs_dropout_prob: f32,
pub hidden_dropout_prob: f32,
pub num_attention_heads: usize,
pub position_embedding_type: String,
pub intermediate_size: usize,
pub hidden_act: Activation,
pub num_hidden_layers: usize,
pub vocab_size: usize,
pub max_position_embeddings: usize,
pub type_vocab_size: usize,
pub pad_token_id: u32,
}
struct XLMRobertaEmbeddings {
word_embeddings: Embedding,
position_embeddings: Option<Embedding>,
token_type_embeddings: Embedding,
layer_norm: LayerNorm,
padding_idx: u32,
span: tracing::Span,
}
impl XLMRobertaEmbeddings {
fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
let word_embeddings = embedding(
config.vocab_size,
config.hidden_size,
vb.pp("word_embeddings"),
)?;
let position_embeddings = embedding(
config.max_position_embeddings,
config.hidden_size,
vb.pp("position_embeddings"),
)?;
let token_type_embeddings = embedding(
config.type_vocab_size,
config.hidden_size,
vb.pp("token_type_embeddings"),
)?;
let layer_norm = layer_norm(
config.hidden_size,
config.layer_norm_eps,
vb.pp("LayerNorm"),
)?;
Ok(Self {
word_embeddings,
position_embeddings: Some(position_embeddings),
token_type_embeddings,
layer_norm,
padding_idx: config.pad_token_id,
span: tracing::span!(tracing::Level::TRACE, "embeddings"),
})
}
fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
let (_bsize, _) = input_ids.dims2()?;
let input_embeddings = self.word_embeddings.forward(input_ids)?;
let token_type_embeddings = self.token_type_embeddings.forward(token_type_ids)?;
let mut embeddings = (&input_embeddings + token_type_embeddings)?;
if let Some(position_embeddings) = &self.position_embeddings {
let mask = input_ids
.ne(self.padding_idx)?
.to_dtype(input_embeddings.dtype())?;
let cumsum = mask.cumsum(1)?;
let position_ids = (cumsum * mask)?
.broadcast_add(
&Tensor::try_from(self.padding_idx)?
.to_dtype(input_embeddings.dtype())?
.to_device(input_embeddings.device())?,
)?
.to_dtype(candle::DType::U32)?;
embeddings = embeddings.broadcast_add(&position_embeddings.forward(&position_ids)?)?;
}
let embeddings = self.layer_norm.forward(&embeddings)?;
Ok(embeddings)
}
}
struct XLMRobertaSelfAttention {
num_attention_heads: usize,
attention_head_size: usize,
all_head_size: usize,
query: Linear,
key: Linear,
value: Linear,
}
impl XLMRobertaSelfAttention {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let attention_head_size = cfg.hidden_size / cfg.num_attention_heads;
let all_head_size = cfg.num_attention_heads * attention_head_size;
Ok(Self {
num_attention_heads: cfg.num_attention_heads,
attention_head_size,
all_head_size,
query: linear(cfg.hidden_size, all_head_size, vb.pp("query"))?,
key: linear(cfg.hidden_size, all_head_size, vb.pp("key"))?,
value: linear(cfg.hidden_size, all_head_size, vb.pp("value"))?,
})
}
fn transpose_for_scores(&self, x: &Tensor) -> Result<Tensor> {
let mut new_x_shape = x.dims().to_vec();
new_x_shape[2] = self.num_attention_heads;
new_x_shape.push(self.attention_head_size);
let x = x.reshape(new_x_shape)?;
x.permute((0, 2, 1, 3))?.contiguous()
}
fn forward(
&self,
hidden_states: &Tensor,
encoder_hidden_states: Option<&Tensor>,
attention_mask: &Tensor,
past_key_value: Option<(&Tensor, &Tensor)>,
encoder_attention_mask: Option<&Tensor>,
) -> Result<Tensor> {
let mixed_query_layer = self.query.forward(hidden_states)?;
let is_cross_attention = encoder_hidden_states.is_some();
let (key_layer, value_layer, attention_mask) = if is_cross_attention
&& past_key_value.is_some()
{
let key_layer = past_key_value.unwrap().0.clone();
let value_layer = past_key_value.unwrap().1.clone();
let attention_mask = encoder_attention_mask.unwrap().clone();
(key_layer, value_layer, Some(attention_mask))
} else if is_cross_attention {
let key_layer =
self.transpose_for_scores(&self.key.forward(encoder_hidden_states.unwrap())?)?;
let value_layer =
self.transpose_for_scores(&self.value.forward(encoder_hidden_states.unwrap())?)?;
let attention_mask = encoder_attention_mask.unwrap();
(key_layer, value_layer, Some(attention_mask.clone()))
} else if past_key_value.is_some() {
let mut key_layer = self.transpose_for_scores(&self.key.forward(hidden_states)?)?;
let mut value_layer = self.transpose_for_scores(&self.value.forward(hidden_states)?)?;
key_layer = Tensor::cat(
&[
past_key_value.clone().as_ref().unwrap().0.clone(),
key_layer,
],
2,
)?;
value_layer = Tensor::cat(
&[past_key_value.as_ref().unwrap().1.clone(), value_layer],
2,
)?;
(key_layer, value_layer, Some(attention_mask.clone()))
} else {
let key_layer = self.transpose_for_scores(&self.key.forward(hidden_states)?)?;
let value_layer = self.transpose_for_scores(&self.value.forward(hidden_states)?)?;
(key_layer, value_layer, Some(attention_mask.clone()))
};
let query_layer = self.transpose_for_scores(&mixed_query_layer)?;
let mut attention_scores = query_layer.matmul(&key_layer.transpose(2, 3)?)?;
let scale = 1f64 / f64::sqrt(self.attention_head_size as f64);
attention_scores = (attention_scores * scale)?;
attention_scores = match attention_mask {
None => attention_scores,
Some(mask) => {
attention_scores.broadcast_add(&mask.to_dtype(attention_scores.dtype())?)?
}
};
let attention_probs = softmax_last_dim(&attention_scores)?;
let context_layer = attention_probs
.matmul(&value_layer)?
.permute((0, 2, 1, 3))?
.contiguous()?;
let mut new_context_layer_shape =
context_layer.dims()[..context_layer.dims().len() - 2].to_vec();
new_context_layer_shape.push(self.all_head_size);
let context_layer = context_layer.reshape(new_context_layer_shape)?;
Ok(context_layer)
}
}
struct XLMRobertaSelfOutput {
dense: Linear,
layernorm: LayerNorm,
}
impl XLMRobertaSelfOutput {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let dense = linear(cfg.hidden_size, cfg.hidden_size, vb.pp("dense"))?;
let layernorm =
candle_nn::layer_norm(cfg.hidden_size, cfg.layer_norm_eps, vb.pp("LayerNorm"))?;
Ok(Self { dense, layernorm })
}
fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
let hidden_states = self.dense.forward(hidden_states)?;
let hidden_states = self.layernorm.forward(&(hidden_states + input_tensor)?)?;
Ok(hidden_states)
}
}
struct XLMRobertaAttention {
output: XLMRobertaSelfOutput,
self_attention: XLMRobertaSelfAttention,
}
impl XLMRobertaAttention {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let output = XLMRobertaSelfOutput::new(cfg, vb.pp("output"))?;
let self_attention = XLMRobertaSelfAttention::new(cfg, vb.pp("self"))?;
Ok(Self {
output,
self_attention,
})
}
fn forward(
&self,
hidden_states: &Tensor,
attention_mask: &Tensor,
encoder_hidden_states: Option<&Tensor>,
encoder_attention_mask: Option<&Tensor>,
past_key_value: Option<(&Tensor, &Tensor)>,
) -> Result<(Tensor, Tensor)> {
let self_outputs = self.self_attention.forward(
hidden_states,
encoder_hidden_states,
attention_mask,
past_key_value,
encoder_attention_mask,
)?;
let attention_output = self.output.forward(&self_outputs, hidden_states)?;
Ok((attention_output, self_outputs))
}
}
struct XLMRobertaOutput {
dense: Linear,
layernorm: LayerNorm,
}
impl XLMRobertaOutput {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let dense = linear(cfg.intermediate_size, cfg.hidden_size, vb.pp("dense"))?;
let layernorm =
candle_nn::layer_norm(cfg.hidden_size, cfg.layer_norm_eps, vb.pp("LayerNorm"))?;
Ok(Self { dense, layernorm })
}
fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
let hidden_states = self.dense.forward(hidden_states)?;
let hidden_states = self.layernorm.forward(&(hidden_states + input_tensor)?)?;
Ok(hidden_states)
}
}
struct XLMRobertaIntermediate {
dense: Linear,
intermediate_act_fn: Activation,
}
impl XLMRobertaIntermediate {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let dense = linear(cfg.hidden_size, cfg.intermediate_size, vb.pp("dense"))?;
let intermediate_act_fn = cfg.hidden_act;
Ok(Self {
dense,
intermediate_act_fn,
})
}
fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
let hidden_states = self.dense.forward(hidden_states)?;
let hidden_states = self.intermediate_act_fn.forward(&hidden_states)?;
Ok(hidden_states)
}
}
struct XLMRobertaLayer {
attention: XLMRobertaAttention,
intermediate: XLMRobertaIntermediate,
output: XLMRobertaOutput,
}
impl XLMRobertaLayer {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let attention = XLMRobertaAttention::new(cfg, vb.pp("attention"))?;
let intermediate = XLMRobertaIntermediate::new(cfg, vb.pp("intermediate"))?;
let output = XLMRobertaOutput::new(cfg, vb.pp("output"))?;
Ok(Self {
attention,
intermediate,
output,
})
}
fn forward(
&self,
hidden_states: &Tensor,
attention_mask: &Tensor,
encoder_hidden_states: Option<&Tensor>,
encoder_attention_mask: Option<&Tensor>,
past_key_value: Option<(&Tensor, &Tensor)>,
) -> Result<(Tensor, Tensor)> {
let self_attention_outputs = self.attention.forward(
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
)?;
let attention_output = self_attention_outputs.0;
let outputs = self_attention_outputs.1;
let intermediate_output = self.intermediate.forward(&attention_output)?;
let layer_output = self
.output
.forward(&intermediate_output, &attention_output)?;
Ok((layer_output, outputs))
}
}
struct XLMRobertaEncoder {
layers: Vec<XLMRobertaLayer>,
}
impl XLMRobertaEncoder {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let layers = (0..cfg.num_hidden_layers)
.map(|i| XLMRobertaLayer::new(cfg, vb.pp(format!("layer.{}", i))))
.collect::<Result<Vec<_>>>()?;
Ok(Self { layers })
}
fn forward(
&self,
hidden_states: &Tensor,
attention_mask: &Tensor,
encoder_hidden_states: Option<&Tensor>,
encoder_attention_mask: Option<&Tensor>,
past_key_value: Option<(&Tensor, &Tensor)>,
) -> Result<Tensor> {
let mut hidden_states = hidden_states.clone();
for layer_module in self.layers.iter() {
let layer_outputs = layer_module.forward(
&hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
)?;
hidden_states = layer_outputs.0;
}
Ok(hidden_states)
}
}
pub struct XLMRobertaModel {
encoder: XLMRobertaEncoder,
embeddings: XLMRobertaEmbeddings,
}
impl XLMRobertaModel {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let encoder = XLMRobertaEncoder::new(cfg, vb.pp("encoder"))?;
let embeddings = XLMRobertaEmbeddings::load(vb.pp("embeddings"), cfg)?;
Ok(Self {
encoder,
embeddings,
})
}
pub fn forward(
&self,
input_ids: &Tensor,
attention_mask: &Tensor,
token_type_ids: &Tensor,
past_key_value: Option<(&Tensor, &Tensor)>,
encoder_hidden_states: Option<&Tensor>,
encoder_attention_mask: Option<&Tensor>,
) -> Result<Tensor> {
let hidden_states = self.embeddings.forward(input_ids, token_type_ids)?;
let attention_mask = prepare_4d_attention_mask(attention_mask, DType::F32, None)?
.to_device(hidden_states.device())?;
let hidden_states = self.encoder.forward(
&hidden_states,
&attention_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
)?;
Ok(hidden_states)
}
}
struct XLMRobertaLMHead {
dense: Linear,
layer_norm: LayerNorm,
}
impl XLMRobertaLMHead {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let dense = linear(cfg.hidden_size, cfg.hidden_size, vb.pp("dense"))?;
let layer_norm =
candle_nn::layer_norm(cfg.hidden_size, cfg.layer_norm_eps, vb.pp("layer_norm"))?;
Ok(Self { dense, layer_norm })
}
fn forward(&self, hidden_states: &Tensor, shared_embeddings: &Tensor) -> Result<Tensor> {
let hidden_states = self.dense.forward(hidden_states)?;
let hidden_states = candle_nn::Activation::Gelu.forward(&hidden_states)?;
let hidden_states = self.layer_norm.forward(&hidden_states)?;
let hidden_states = hidden_states.broadcast_matmul(shared_embeddings)?;
Ok(hidden_states)
}
}
pub struct XLMRobertaForMaskedLM {
roberta: XLMRobertaModel,
lm_head: XLMRobertaLMHead,
}
impl XLMRobertaForMaskedLM {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let roberta = XLMRobertaModel::new(cfg, vb.pp("roberta"))?;
let lm_head = XLMRobertaLMHead::new(cfg, vb.pp("lm_head"))?;
Ok(Self { roberta, lm_head })
}
pub fn forward(
&self,
input_ids: &Tensor,
attention_mask: &Tensor,
token_type_ids: &Tensor,
past_key_value: Option<(&Tensor, &Tensor)>,
encoder_hidden_states: Option<&Tensor>,
encoder_attention_mask: Option<&Tensor>,
) -> Result<Tensor> {
let hidden_states = self.roberta.forward(
input_ids,
attention_mask,
token_type_ids,
past_key_value,
encoder_hidden_states,
encoder_attention_mask,
)?;
let lm_logits = self.lm_head.forward(
&hidden_states,
&self
.roberta
.embeddings
.word_embeddings
.embeddings()
.t()?
.unsqueeze(0)?,
)?;
Ok(lm_logits)
}
}
struct XLMRobertaClassificationHead {
dense: Linear,
out_proj: Linear,
}
impl XLMRobertaClassificationHead {
fn new(num_labels: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let dense = linear(cfg.hidden_size, cfg.hidden_size, vb.pp("dense"))?;
let out_proj = linear(cfg.hidden_size, num_labels, vb.pp("out_proj"))?;
Ok(Self { dense, out_proj })
}
fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
let cls_states = hidden_states.get_on_dim(1, 0)?.contiguous()?;
let hidden_states = self.dense.forward(&cls_states)?;
// The activation used in the classification head is tanh, as per the original
// implementation.
// https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/xlm_roberta/modeling_xlm_roberta.py#L1454
let hidden_states = self.out_proj.forward(&hidden_states.tanh()?)?;
Ok(hidden_states)
}
}
pub struct XLMRobertaForSequenceClassification {
roberta: XLMRobertaModel,
classifier: XLMRobertaClassificationHead,
}
impl XLMRobertaForSequenceClassification {
pub fn new(num_labels: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let roberta = XLMRobertaModel::new(cfg, vb.pp("roberta"))?;
let classifier = XLMRobertaClassificationHead::new(num_labels, cfg, vb.pp("classifier"))?;
Ok(Self {
roberta,
classifier,
})
}
pub fn forward(
&self,
input_ids: &Tensor,
attention_mask: &Tensor,
token_type_ids: &Tensor,
) -> Result<Tensor> {
let hidden_states =
self.roberta
.forward(input_ids, attention_mask, token_type_ids, None, None, None)?;
self.classifier.forward(&hidden_states)
}
}
fn prepare_4d_attention_mask(
mask: &Tensor,
dtype: DType,
tgt_len: Option<usize>,
) -> Result<Tensor> {
let bsz = mask.dim(0)?;
let src_len = mask.dim(1)?;
let tgt_len = tgt_len.unwrap_or(src_len);
let expanded_mask = mask
.unsqueeze(1)?
.unsqueeze(2)?
.expand((bsz, 1, tgt_len, src_len))?
.to_dtype(dtype)?;
let inverted_mask = (1.0 - expanded_mask)?;
(inverted_mask * get_dtype_min_val(dtype))?.to_dtype(dtype)
}
fn get_dtype_min_val(dtype: DType) -> f64 {
match dtype {
DType::F32 => f32::MIN as f64,
DType::F64 => f64::MIN,
_ => panic!("Unsupported data type"),
}
}