mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 18:28:24 +00:00

* Use multiple transformer layer in the same cross-attn blocks. * Make the context contiguous if required.
402 lines
15 KiB
Rust
402 lines
15 KiB
Rust
//! 2D UNet Denoising Models
|
|
//!
|
|
//! The 2D Unet models take as input a noisy sample and the current diffusion
|
|
//! timestep and return a denoised version of the input.
|
|
use crate::embeddings::{TimestepEmbedding, Timesteps};
|
|
use crate::unet_2d_blocks::*;
|
|
use crate::utils::{conv2d, Conv2d};
|
|
use candle::{Result, Tensor};
|
|
use candle_nn as nn;
|
|
use candle_nn::Module;
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub struct BlockConfig {
|
|
pub out_channels: usize,
|
|
/// When `None` no cross-attn is used, when `Some(d)` then cross-attn is used and `d` is the
|
|
/// number of transformer blocks to be used.
|
|
pub use_cross_attn: Option<usize>,
|
|
pub attention_head_dim: usize,
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub struct UNet2DConditionModelConfig {
|
|
pub center_input_sample: bool,
|
|
pub flip_sin_to_cos: bool,
|
|
pub freq_shift: f64,
|
|
pub blocks: Vec<BlockConfig>,
|
|
pub layers_per_block: usize,
|
|
pub downsample_padding: usize,
|
|
pub mid_block_scale_factor: f64,
|
|
pub norm_num_groups: usize,
|
|
pub norm_eps: f64,
|
|
pub cross_attention_dim: usize,
|
|
pub sliced_attention_size: Option<usize>,
|
|
pub use_linear_projection: bool,
|
|
}
|
|
|
|
impl Default for UNet2DConditionModelConfig {
|
|
fn default() -> Self {
|
|
Self {
|
|
center_input_sample: false,
|
|
flip_sin_to_cos: true,
|
|
freq_shift: 0.,
|
|
blocks: vec![
|
|
BlockConfig {
|
|
out_channels: 320,
|
|
use_cross_attn: Some(1),
|
|
attention_head_dim: 8,
|
|
},
|
|
BlockConfig {
|
|
out_channels: 640,
|
|
use_cross_attn: Some(1),
|
|
attention_head_dim: 8,
|
|
},
|
|
BlockConfig {
|
|
out_channels: 1280,
|
|
use_cross_attn: Some(1),
|
|
attention_head_dim: 8,
|
|
},
|
|
BlockConfig {
|
|
out_channels: 1280,
|
|
use_cross_attn: None,
|
|
attention_head_dim: 8,
|
|
},
|
|
],
|
|
layers_per_block: 2,
|
|
downsample_padding: 1,
|
|
mid_block_scale_factor: 1.,
|
|
norm_num_groups: 32,
|
|
norm_eps: 1e-5,
|
|
cross_attention_dim: 1280,
|
|
sliced_attention_size: None,
|
|
use_linear_projection: false,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub(crate) enum UNetDownBlock {
|
|
Basic(DownBlock2D),
|
|
CrossAttn(CrossAttnDownBlock2D),
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
enum UNetUpBlock {
|
|
Basic(UpBlock2D),
|
|
CrossAttn(CrossAttnUpBlock2D),
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct UNet2DConditionModel {
|
|
conv_in: Conv2d,
|
|
time_proj: Timesteps,
|
|
time_embedding: TimestepEmbedding,
|
|
down_blocks: Vec<UNetDownBlock>,
|
|
mid_block: UNetMidBlock2DCrossAttn,
|
|
up_blocks: Vec<UNetUpBlock>,
|
|
conv_norm_out: nn::GroupNorm,
|
|
conv_out: Conv2d,
|
|
span: tracing::Span,
|
|
config: UNet2DConditionModelConfig,
|
|
}
|
|
|
|
impl UNet2DConditionModel {
|
|
pub fn new(
|
|
vs: nn::VarBuilder,
|
|
in_channels: usize,
|
|
out_channels: usize,
|
|
use_flash_attn: bool,
|
|
config: UNet2DConditionModelConfig,
|
|
) -> Result<Self> {
|
|
let n_blocks = config.blocks.len();
|
|
let b_channels = config.blocks[0].out_channels;
|
|
let bl_channels = config.blocks.last().unwrap().out_channels;
|
|
let bl_attention_head_dim = config.blocks.last().unwrap().attention_head_dim;
|
|
let time_embed_dim = b_channels * 4;
|
|
let conv_cfg = nn::Conv2dConfig {
|
|
padding: 1,
|
|
..Default::default()
|
|
};
|
|
let conv_in = conv2d(in_channels, b_channels, 3, conv_cfg, vs.pp("conv_in"))?;
|
|
|
|
let time_proj = Timesteps::new(b_channels, config.flip_sin_to_cos, config.freq_shift);
|
|
let time_embedding =
|
|
TimestepEmbedding::new(vs.pp("time_embedding"), b_channels, time_embed_dim)?;
|
|
|
|
let vs_db = vs.pp("down_blocks");
|
|
let down_blocks = (0..n_blocks)
|
|
.map(|i| {
|
|
let BlockConfig {
|
|
out_channels,
|
|
use_cross_attn,
|
|
attention_head_dim,
|
|
} = config.blocks[i];
|
|
|
|
// Enable automatic attention slicing if the config sliced_attention_size is set to 0.
|
|
let sliced_attention_size = match config.sliced_attention_size {
|
|
Some(0) => Some(attention_head_dim / 2),
|
|
_ => config.sliced_attention_size,
|
|
};
|
|
|
|
let in_channels = if i > 0 {
|
|
config.blocks[i - 1].out_channels
|
|
} else {
|
|
b_channels
|
|
};
|
|
let db_cfg = DownBlock2DConfig {
|
|
num_layers: config.layers_per_block,
|
|
resnet_eps: config.norm_eps,
|
|
resnet_groups: config.norm_num_groups,
|
|
add_downsample: i < n_blocks - 1,
|
|
downsample_padding: config.downsample_padding,
|
|
..Default::default()
|
|
};
|
|
if let Some(transformer_layers_per_block) = use_cross_attn {
|
|
let config = CrossAttnDownBlock2DConfig {
|
|
downblock: db_cfg,
|
|
attn_num_head_channels: attention_head_dim,
|
|
cross_attention_dim: config.cross_attention_dim,
|
|
sliced_attention_size,
|
|
use_linear_projection: config.use_linear_projection,
|
|
transformer_layers_per_block,
|
|
};
|
|
let block = CrossAttnDownBlock2D::new(
|
|
vs_db.pp(&i.to_string()),
|
|
in_channels,
|
|
out_channels,
|
|
Some(time_embed_dim),
|
|
use_flash_attn,
|
|
config,
|
|
)?;
|
|
Ok(UNetDownBlock::CrossAttn(block))
|
|
} else {
|
|
let block = DownBlock2D::new(
|
|
vs_db.pp(&i.to_string()),
|
|
in_channels,
|
|
out_channels,
|
|
Some(time_embed_dim),
|
|
db_cfg,
|
|
)?;
|
|
Ok(UNetDownBlock::Basic(block))
|
|
}
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
|
|
// https://github.com/huggingface/diffusers/blob/a76f2ad538e73b34d5fe7be08c8eb8ab38c7e90c/src/diffusers/models/unet_2d_condition.py#L462
|
|
let mid_transformer_layers_per_block = match config.blocks.last() {
|
|
None => 1,
|
|
Some(block) => block.use_cross_attn.unwrap_or(1),
|
|
};
|
|
let mid_cfg = UNetMidBlock2DCrossAttnConfig {
|
|
resnet_eps: config.norm_eps,
|
|
output_scale_factor: config.mid_block_scale_factor,
|
|
cross_attn_dim: config.cross_attention_dim,
|
|
attn_num_head_channels: bl_attention_head_dim,
|
|
resnet_groups: Some(config.norm_num_groups),
|
|
use_linear_projection: config.use_linear_projection,
|
|
transformer_layers_per_block: mid_transformer_layers_per_block,
|
|
..Default::default()
|
|
};
|
|
|
|
let mid_block = UNetMidBlock2DCrossAttn::new(
|
|
vs.pp("mid_block"),
|
|
bl_channels,
|
|
Some(time_embed_dim),
|
|
use_flash_attn,
|
|
mid_cfg,
|
|
)?;
|
|
|
|
let vs_ub = vs.pp("up_blocks");
|
|
let up_blocks = (0..n_blocks)
|
|
.map(|i| {
|
|
let BlockConfig {
|
|
out_channels,
|
|
use_cross_attn,
|
|
attention_head_dim,
|
|
} = config.blocks[n_blocks - 1 - i];
|
|
|
|
// Enable automatic attention slicing if the config sliced_attention_size is set to 0.
|
|
let sliced_attention_size = match config.sliced_attention_size {
|
|
Some(0) => Some(attention_head_dim / 2),
|
|
_ => config.sliced_attention_size,
|
|
};
|
|
|
|
let prev_out_channels = if i > 0 {
|
|
config.blocks[n_blocks - i].out_channels
|
|
} else {
|
|
bl_channels
|
|
};
|
|
let in_channels = {
|
|
let index = if i == n_blocks - 1 {
|
|
0
|
|
} else {
|
|
n_blocks - i - 2
|
|
};
|
|
config.blocks[index].out_channels
|
|
};
|
|
let ub_cfg = UpBlock2DConfig {
|
|
num_layers: config.layers_per_block + 1,
|
|
resnet_eps: config.norm_eps,
|
|
resnet_groups: config.norm_num_groups,
|
|
add_upsample: i < n_blocks - 1,
|
|
..Default::default()
|
|
};
|
|
if let Some(transformer_layers_per_block) = use_cross_attn {
|
|
let config = CrossAttnUpBlock2DConfig {
|
|
upblock: ub_cfg,
|
|
attn_num_head_channels: attention_head_dim,
|
|
cross_attention_dim: config.cross_attention_dim,
|
|
sliced_attention_size,
|
|
use_linear_projection: config.use_linear_projection,
|
|
transformer_layers_per_block,
|
|
};
|
|
let block = CrossAttnUpBlock2D::new(
|
|
vs_ub.pp(&i.to_string()),
|
|
in_channels,
|
|
prev_out_channels,
|
|
out_channels,
|
|
Some(time_embed_dim),
|
|
use_flash_attn,
|
|
config,
|
|
)?;
|
|
Ok(UNetUpBlock::CrossAttn(block))
|
|
} else {
|
|
let block = UpBlock2D::new(
|
|
vs_ub.pp(&i.to_string()),
|
|
in_channels,
|
|
prev_out_channels,
|
|
out_channels,
|
|
Some(time_embed_dim),
|
|
ub_cfg,
|
|
)?;
|
|
Ok(UNetUpBlock::Basic(block))
|
|
}
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
|
|
let conv_norm_out = nn::group_norm(
|
|
config.norm_num_groups,
|
|
b_channels,
|
|
config.norm_eps,
|
|
vs.pp("conv_norm_out"),
|
|
)?;
|
|
let conv_out = conv2d(b_channels, out_channels, 3, conv_cfg, vs.pp("conv_out"))?;
|
|
let span = tracing::span!(tracing::Level::TRACE, "unet2d");
|
|
Ok(Self {
|
|
conv_in,
|
|
time_proj,
|
|
time_embedding,
|
|
down_blocks,
|
|
mid_block,
|
|
up_blocks,
|
|
conv_norm_out,
|
|
conv_out,
|
|
span,
|
|
config,
|
|
})
|
|
}
|
|
|
|
pub fn forward(
|
|
&self,
|
|
xs: &Tensor,
|
|
timestep: f64,
|
|
encoder_hidden_states: &Tensor,
|
|
) -> Result<Tensor> {
|
|
let _enter = self.span.enter();
|
|
self.forward_with_additional_residuals(xs, timestep, encoder_hidden_states, None, None)
|
|
}
|
|
|
|
pub fn forward_with_additional_residuals(
|
|
&self,
|
|
xs: &Tensor,
|
|
timestep: f64,
|
|
encoder_hidden_states: &Tensor,
|
|
down_block_additional_residuals: Option<&[Tensor]>,
|
|
mid_block_additional_residual: Option<&Tensor>,
|
|
) -> Result<Tensor> {
|
|
let (bsize, _channels, height, width) = xs.dims4()?;
|
|
let device = xs.device();
|
|
let n_blocks = self.config.blocks.len();
|
|
let num_upsamplers = n_blocks - 1;
|
|
let default_overall_up_factor = 2usize.pow(num_upsamplers as u32);
|
|
let forward_upsample_size =
|
|
height % default_overall_up_factor != 0 || width % default_overall_up_factor != 0;
|
|
// 0. center input if necessary
|
|
let xs = if self.config.center_input_sample {
|
|
((xs * 2.0)? - 1.0)?
|
|
} else {
|
|
xs.clone()
|
|
};
|
|
// 1. time
|
|
let emb = (Tensor::ones(bsize, xs.dtype(), device)? * timestep)?;
|
|
let emb = self.time_proj.forward(&emb)?;
|
|
let emb = self.time_embedding.forward(&emb)?;
|
|
// 2. pre-process
|
|
let xs = self.conv_in.forward(&xs)?;
|
|
// 3. down
|
|
let mut down_block_res_xs = vec![xs.clone()];
|
|
let mut xs = xs;
|
|
for down_block in self.down_blocks.iter() {
|
|
let (_xs, res_xs) = match down_block {
|
|
UNetDownBlock::Basic(b) => b.forward(&xs, Some(&emb))?,
|
|
UNetDownBlock::CrossAttn(b) => {
|
|
b.forward(&xs, Some(&emb), Some(encoder_hidden_states))?
|
|
}
|
|
};
|
|
down_block_res_xs.extend(res_xs);
|
|
xs = _xs;
|
|
}
|
|
|
|
let new_down_block_res_xs =
|
|
if let Some(down_block_additional_residuals) = down_block_additional_residuals {
|
|
let mut v = vec![];
|
|
// A previous version of this code had a bug because of the addition being made
|
|
// in place via += hence modifying the input of the mid block.
|
|
for (i, residuals) in down_block_additional_residuals.iter().enumerate() {
|
|
v.push((&down_block_res_xs[i] + residuals)?)
|
|
}
|
|
v
|
|
} else {
|
|
down_block_res_xs
|
|
};
|
|
let mut down_block_res_xs = new_down_block_res_xs;
|
|
|
|
// 4. mid
|
|
let xs = self
|
|
.mid_block
|
|
.forward(&xs, Some(&emb), Some(encoder_hidden_states))?;
|
|
let xs = match mid_block_additional_residual {
|
|
None => xs,
|
|
Some(m) => (m + xs)?,
|
|
};
|
|
// 5. up
|
|
let mut xs = xs;
|
|
let mut upsample_size = None;
|
|
for (i, up_block) in self.up_blocks.iter().enumerate() {
|
|
let n_resnets = match up_block {
|
|
UNetUpBlock::Basic(b) => b.resnets.len(),
|
|
UNetUpBlock::CrossAttn(b) => b.upblock.resnets.len(),
|
|
};
|
|
let res_xs = down_block_res_xs.split_off(down_block_res_xs.len() - n_resnets);
|
|
if i < n_blocks - 1 && forward_upsample_size {
|
|
let (_, _, h, w) = down_block_res_xs.last().unwrap().dims4()?;
|
|
upsample_size = Some((h, w))
|
|
}
|
|
xs = match up_block {
|
|
UNetUpBlock::Basic(b) => b.forward(&xs, &res_xs, Some(&emb), upsample_size)?,
|
|
UNetUpBlock::CrossAttn(b) => b.forward(
|
|
&xs,
|
|
&res_xs,
|
|
Some(&emb),
|
|
upsample_size,
|
|
Some(encoder_hidden_states),
|
|
)?,
|
|
};
|
|
}
|
|
// 6. post-process
|
|
let xs = self.conv_norm_out.forward(&xs)?;
|
|
let xs = nn::ops::silu(&xs)?;
|
|
self.conv_out.forward(&xs)
|
|
}
|
|
}
|