Files
candle/candle-examples/examples/phi/main.rs
2023-10-27 05:57:08 +01:00

314 lines
9.9 KiB
Rust

#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::{Error as E, Result};
use clap::{Parser, ValueEnum};
use candle_transformers::models::mixformer::{Config, MixFormerSequentialForCausalLM as MixFormer};
use candle_transformers::models::quantized_mixformer::MixFormerSequentialForCausalLM as QMixFormer;
use candle::{DType, Device, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;
enum Model {
MixFormer(MixFormer),
Quantized(QMixFormer),
}
struct TextGeneration {
model: Model,
device: Device,
tokenizer: Tokenizer,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
verbose_prompt: bool,
}
impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(
model: Model,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
repeat_penalty: f32,
repeat_last_n: usize,
verbose_prompt: bool,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
tokenizer,
logits_processor,
repeat_penalty,
repeat_last_n,
verbose_prompt,
device: device.clone(),
}
}
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
println!("starting the inference loop");
let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?;
if tokens.is_empty() {
anyhow::bail!("Empty prompts are not supported in the phi model.")
}
if self.verbose_prompt {
for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
let token = token.replace('▁', " ").replace("<0x0A>", "\n");
println!("{id:7} -> '{token}'");
}
}
let mut tokens = tokens.get_ids().to_vec();
let mut generated_tokens = 0usize;
let eos_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") {
Some(token) => *token,
None => anyhow::bail!("cannot find the endoftext token"),
};
print!("{prompt}");
std::io::stdout().flush()?;
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = match &mut self.model {
Model::MixFormer(m) => m.forward(&input)?,
Model::Quantized(m) => m.forward(&input)?,
};
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token {
break;
}
let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
print!("{token}");
std::io::stdout().flush()?;
}
let dt = start_gen.elapsed();
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64(),
);
Ok(())
}
}
#[derive(Clone, Copy, Debug, ValueEnum)]
enum WhichModel {
#[value(name = "1")]
V1,
#[value(name = "1.5")]
V1_5,
PuffinPhiV2,
PhiHermes,
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
/// Display the token for the specified prompt.
#[arg(long)]
verbose_prompt: bool,
#[arg(long)]
prompt: String,
/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 100)]
sample_len: usize,
#[arg(long)]
model_id: Option<String>,
#[arg(long, default_value = "1.5")]
model: WhichModel,
#[arg(long)]
revision: Option<String>,
#[arg(long)]
weight_file: Option<String>,
#[arg(long)]
tokenizer: Option<String>,
#[arg(long)]
quantized: bool,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
}
fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature.unwrap_or(0.),
args.repeat_penalty,
args.repeat_last_n
);
let start = std::time::Instant::now();
let api = Api::new()?;
let model_id = match args.model_id {
Some(model_id) => model_id.to_string(),
None => {
if args.quantized {
"lmz/candle-quantized-phi".to_string()
} else {
match args.model {
WhichModel::V1 => "microsoft/phi-1".to_string(),
WhichModel::V1_5 => "microsoft/phi-1_5".to_string(),
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
"lmz/candle-quantized-phi".to_string()
}
}
}
}
};
let revision = match args.revision {
Some(rev) => rev.to_string(),
None => {
if args.quantized {
"main".to_string()
} else {
match args.model {
WhichModel::V1 => "refs/pr/2".to_string(),
WhichModel::V1_5 => "refs/pr/18".to_string(),
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => "main".to_string(),
}
}
}
};
let repo = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
let tokenizer_filename = match args.tokenizer {
Some(file) => std::path::PathBuf::from(file),
None => match args.model {
WhichModel::V1 | WhichModel::V1_5 => repo.get("tokenizer.json")?,
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
repo.get("tokenizer-puffin-phi-v2.json")?
}
},
};
let filename = match args.weight_file {
Some(weight_file) => std::path::PathBuf::from(weight_file),
None => {
if args.quantized {
match args.model {
WhichModel::V1 => repo.get("model-v1-q4k.gguf")?,
WhichModel::V1_5 => repo.get("model-q4k.gguf")?,
WhichModel::PuffinPhiV2 => repo.get("model-puffin-phi-v2-q4k.gguf")?,
WhichModel::PhiHermes => repo.get("model-phi-hermes-1_3B-q4k.gguf")?,
}
} else {
match args.model {
WhichModel::V1 | WhichModel::V1_5 => repo.get("model.safetensors")?,
WhichModel::PuffinPhiV2 => repo.get("model-puffin-phi-v2.safetensors")?,
WhichModel::PhiHermes => repo.get("model-phi-hermes-1_3B.safetensors")?,
}
}
}
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
let config = match args.model {
WhichModel::V1 => Config::v1(),
WhichModel::V1_5 => Config::v1_5(),
WhichModel::PuffinPhiV2 => Config::puffin_phi_v2(),
WhichModel::PhiHermes => Config::phi_hermes_1_3b(),
};
let (model, device) = if args.quantized {
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(&filename)?;
let model = QMixFormer::new(&config, vb)?;
(Model::Quantized(model), Device::Cpu)
} else {
let device = candle_examples::device(args.cpu)?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[filename], DType::F32, &device)? };
let model = MixFormer::new(&config, vb)?;
(Model::MixFormer(model), device)
};
println!("loaded the model in {:?}", start.elapsed());
let mut pipeline = TextGeneration::new(
model,
tokenizer,
args.seed,
args.temperature,
args.top_p,
args.repeat_penalty,
args.repeat_last_n,
args.verbose_prompt,
&device,
);
pipeline.run(&args.prompt, args.sample_len)?;
Ok(())
}