mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
357 lines
11 KiB
Rust
357 lines
11 KiB
Rust
use crate::models::with_tracing::QMatMul;
|
|
pub use crate::quantized_var_builder::VarBuilder;
|
|
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
|
|
use candle_nn::Activation;
|
|
|
|
pub use crate::models::mixformer::Config;
|
|
|
|
const MAX_SEQ_LEN: usize = 4096;
|
|
|
|
#[derive(Debug)]
|
|
struct Embedding {
|
|
wte: super::quantized_t5::Embedding,
|
|
}
|
|
|
|
impl Embedding {
|
|
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let wte = super::quantized_t5::Embedding::new(cfg.vocab_size, cfg.n_embd, vb.pp("wte"))?;
|
|
Ok(Self { wte })
|
|
}
|
|
}
|
|
|
|
impl Module for Embedding {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
self.wte.forward(xs)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct Linear {
|
|
weight: QMatMul,
|
|
bias: Option<Tensor>,
|
|
}
|
|
|
|
impl Module for Linear {
|
|
fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
|
|
let x = x.apply(&self.weight)?;
|
|
match &self.bias {
|
|
None => Ok(x),
|
|
Some(bias) => x.broadcast_add(bias),
|
|
}
|
|
}
|
|
}
|
|
|
|
fn linear(in_dim: usize, out_dim: usize, vb: VarBuilder) -> Result<Linear> {
|
|
let bias = vb.get(out_dim, "bias")?.dequantize(vb.device())?;
|
|
let weight = QMatMul::new(in_dim, out_dim, vb)?;
|
|
Ok(Linear {
|
|
weight,
|
|
bias: Some(bias),
|
|
})
|
|
}
|
|
|
|
fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<candle_nn::LayerNorm> {
|
|
let weight = vb.get(size, "weight")?.dequantize(vb.device())?;
|
|
let bias = vb.get(size, "bias")?.dequantize(vb.device())?;
|
|
Ok(candle_nn::LayerNorm::new(weight, bias, eps))
|
|
}
|
|
|
|
fn get_mask(size: usize, device: &Device) -> Result<Tensor> {
|
|
let mask: Vec<_> = (0..size)
|
|
.flat_map(|i| (0..size).map(move |j| u8::from(j > i)))
|
|
.collect();
|
|
Tensor::from_slice(&mask, (size, size), device)
|
|
}
|
|
|
|
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
|
|
let shape = mask.shape();
|
|
let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
|
|
let m = mask.where_cond(&on_true, on_false)?;
|
|
Ok(m)
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct RotaryEmbedding {
|
|
sin: Tensor,
|
|
cos: Tensor,
|
|
}
|
|
|
|
impl RotaryEmbedding {
|
|
fn new(dim: usize, max_seq_len: usize, dev: &Device) -> Result<Self> {
|
|
let inv_freq: Vec<_> = (0..dim)
|
|
.step_by(2)
|
|
.map(|i| 1f32 / 10000f32.powf(i as f32 / dim as f32))
|
|
.collect();
|
|
let inv_freq_len = inv_freq.len();
|
|
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?;
|
|
let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
|
|
.to_dtype(DType::F32)?
|
|
.reshape((max_seq_len, 1))?;
|
|
let freqs = t.matmul(&inv_freq)?;
|
|
Ok(Self {
|
|
sin: freqs.sin()?,
|
|
cos: freqs.cos()?,
|
|
})
|
|
}
|
|
|
|
fn apply_rotary_emb_qkv(
|
|
&self,
|
|
qkv: &Tensor,
|
|
seqlen_offset: usize,
|
|
) -> Result<(Tensor, Tensor, Tensor)> {
|
|
let (_b_size, seqlen, three, _, _headdim) = qkv.dims5()?;
|
|
if three != 3 {
|
|
candle::bail!("unexpected shape for qkv {:?}", qkv.shape())
|
|
}
|
|
let (_rotary_seqlen, rotary_dim) = self.cos.dims2()?;
|
|
let rotary_dim = rotary_dim * 2;
|
|
let q_rot = qkv.i((.., .., 0, .., ..rotary_dim))?;
|
|
let q_pass = qkv.i((.., .., 0, .., rotary_dim..))?;
|
|
let k_rot = qkv.i((.., .., 1, .., ..rotary_dim))?;
|
|
let k_pass = qkv.i((.., .., 1, .., rotary_dim..))?;
|
|
let q12 = q_rot.chunk(2, D::Minus1)?;
|
|
let k12 = k_rot.chunk(2, D::Minus1)?;
|
|
let (q1, q2) = (&q12[0], &q12[1]);
|
|
let (k1, k2) = (&k12[0], &k12[1]);
|
|
let c = self.cos.narrow(0, seqlen_offset, seqlen)?.unsqueeze(1)?;
|
|
let s = self.sin.narrow(0, seqlen_offset, seqlen)?.unsqueeze(1)?;
|
|
let q_rot = Tensor::cat(
|
|
&[
|
|
(q1.broadcast_mul(&c)? - q2.broadcast_mul(&s)?)?,
|
|
(q1.broadcast_mul(&s)? + q2.broadcast_mul(&c)?)?,
|
|
],
|
|
D::Minus1,
|
|
)?;
|
|
let k_rot = Tensor::cat(
|
|
&[
|
|
(k1.broadcast_mul(&c)? - k2.broadcast_mul(&s)?)?,
|
|
(k1.broadcast_mul(&s)? + k2.broadcast_mul(&c)?)?,
|
|
],
|
|
D::Minus1,
|
|
)?;
|
|
let q = Tensor::cat(&[&q_rot, &q_pass], D::Minus1)?;
|
|
let k = Tensor::cat(&[&k_rot, &k_pass], D::Minus1)?;
|
|
let v = qkv.i((.., .., 2))?;
|
|
Ok((q, k, v))
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
#[allow(clippy::upper_case_acronyms)]
|
|
struct MLP {
|
|
fc1: Linear,
|
|
fc2: Linear,
|
|
act: Activation,
|
|
}
|
|
|
|
impl MLP {
|
|
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let n_inner = cfg.n_inner.unwrap_or(4 * cfg.n_embd);
|
|
let fc1 = linear(cfg.n_embd, n_inner, vb.pp("fc1"))?;
|
|
let fc2 = linear(n_inner, cfg.n_embd, vb.pp("fc2"))?;
|
|
Ok(Self {
|
|
fc1,
|
|
fc2,
|
|
act: cfg.activation_function,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Module for MLP {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
xs.apply(&self.fc1)?.apply(&self.act)?.apply(&self.fc2)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct CausalLMHead {
|
|
ln: candle_nn::LayerNorm,
|
|
linear: Linear,
|
|
}
|
|
|
|
impl CausalLMHead {
|
|
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let ln = layer_norm(cfg.n_embd, cfg.layer_norm_epsilon, vb.pp("ln"))?;
|
|
let linear = linear(cfg.n_embd, cfg.vocab_size, vb.pp("linear"))?;
|
|
Ok(Self { ln, linear })
|
|
}
|
|
}
|
|
|
|
impl Module for CausalLMHead {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
xs.apply(&self.ln)?
|
|
.apply(&self.linear)?
|
|
.to_dtype(DType::F32)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
#[allow(clippy::upper_case_acronyms)]
|
|
struct MHA {
|
|
wqkv: Linear,
|
|
out_proj: Linear,
|
|
rotary_emb: RotaryEmbedding,
|
|
kv_cache: Option<(Tensor, Tensor)>,
|
|
head_dim: usize,
|
|
n_head: usize,
|
|
softmax_scale: f64,
|
|
span: tracing::Span,
|
|
}
|
|
|
|
impl MHA {
|
|
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let head_dim = cfg.n_embd / cfg.n_head;
|
|
let op_size = cfg.n_embd;
|
|
let wqkv = linear(cfg.n_embd, 3 * op_size, vb.pp("Wqkv"))?;
|
|
let out_proj = linear(op_size, cfg.n_embd, vb.pp("out_proj"))?;
|
|
let rotary_emb = RotaryEmbedding::new(cfg.rotary_dim, MAX_SEQ_LEN, vb.device())?;
|
|
let softmax_scale = 1f64 / (head_dim as f64).sqrt();
|
|
Ok(Self {
|
|
wqkv,
|
|
out_proj,
|
|
head_dim,
|
|
n_head: cfg.n_head,
|
|
kv_cache: None,
|
|
rotary_emb,
|
|
softmax_scale,
|
|
span: tracing::span!(tracing::Level::TRACE, "mha"),
|
|
})
|
|
}
|
|
|
|
fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
|
|
let _enter = self.span.enter();
|
|
let (b_size, seq_len, _n_embd) = xs.dims3()?;
|
|
let qkv = self
|
|
.wqkv
|
|
.forward(xs)?
|
|
.reshape((b_size, seq_len, 3, (), self.head_dim))?;
|
|
let seqlen_offset = match &self.kv_cache {
|
|
None => 0,
|
|
Some((prev_k, _)) => prev_k.dim(1)?,
|
|
};
|
|
// In the python implementation, a single tensor is returned with the third axis of size 3.
|
|
let (q, k, v) = self.rotary_emb.apply_rotary_emb_qkv(&qkv, seqlen_offset)?;
|
|
let (k, v) = match &self.kv_cache {
|
|
None => (k, v),
|
|
Some((prev_k, prev_v)) => {
|
|
let k = Tensor::cat(&[prev_k, &k], 1)?;
|
|
let v = Tensor::cat(&[prev_v, &v], 1)?;
|
|
(k, v)
|
|
}
|
|
};
|
|
self.kv_cache = Some((k.clone(), v.clone()));
|
|
// scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
|
|
let q = q.transpose(1, 2)?.flatten_to(1)?; // b*h, t, d
|
|
let k = k.transpose(1, 2)?.flatten_to(1)?; // b*h, s, d
|
|
let v = v.transpose(1, 2)?.flatten_to(1)?; // b*h, s, d
|
|
let attn_weights = (q.matmul(&k.t()?)? * self.softmax_scale)?; // b*h, t, s
|
|
|
|
// causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0, device=scores.device), 1)
|
|
// scores = scores + causal_mask.to(dtype=scores.dtype)
|
|
let attn_weights = match mask {
|
|
None => attn_weights,
|
|
Some(mask) => masked_fill(
|
|
&attn_weights,
|
|
&mask.broadcast_left(b_size * self.n_head)?,
|
|
f32::NEG_INFINITY,
|
|
)?,
|
|
};
|
|
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
|
|
|
|
// output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
|
|
// attn_weights: b*h,t,s, v: b*h,s,d
|
|
let attn_output = attn_weights.matmul(&v)?;
|
|
// b*h,t,d
|
|
let attn_output = attn_output
|
|
.reshape((b_size, (), seq_len, self.head_dim))?
|
|
.transpose(1, 2)?
|
|
.flatten_from(D::Minus2)?;
|
|
attn_output.apply(&self.out_proj)
|
|
}
|
|
|
|
fn clear_kv_cache(&mut self) {
|
|
self.kv_cache = None
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct ParallelBlock {
|
|
ln: candle_nn::LayerNorm,
|
|
mixer: MHA,
|
|
mlp: MLP,
|
|
span: tracing::Span,
|
|
}
|
|
|
|
impl ParallelBlock {
|
|
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let ln = layer_norm(cfg.n_embd, cfg.layer_norm_epsilon, vb.pp("ln"))?;
|
|
let mixer = MHA::new(cfg, vb.pp("mixer"))?;
|
|
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
|
|
Ok(Self {
|
|
ln,
|
|
mixer,
|
|
mlp,
|
|
span: tracing::span!(tracing::Level::TRACE, "block"),
|
|
})
|
|
}
|
|
|
|
fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
|
|
let _enter = self.span.enter();
|
|
let residual = xs;
|
|
let xs = xs.apply(&self.ln)?;
|
|
let attn_outputs = self.mixer.forward(&xs, mask)?;
|
|
let feed_forward_hidden_states = self.mlp.forward(&xs)?;
|
|
attn_outputs + feed_forward_hidden_states + residual
|
|
}
|
|
|
|
fn clear_kv_cache(&mut self) {
|
|
self.mixer.clear_kv_cache()
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct MixFormerSequentialForCausalLM {
|
|
embedding: Embedding,
|
|
blocks: Vec<ParallelBlock>,
|
|
head: CausalLMHead,
|
|
span: tracing::Span,
|
|
}
|
|
|
|
impl MixFormerSequentialForCausalLM {
|
|
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let vb = vb.pp("layers");
|
|
let embedding = Embedding::new(cfg, vb.pp(0))?;
|
|
let mut blocks = Vec::new();
|
|
for i in 0..cfg.n_layer {
|
|
let block = ParallelBlock::new(cfg, vb.pp(i + 1))?;
|
|
blocks.push(block)
|
|
}
|
|
let head = CausalLMHead::new(cfg, vb.pp(cfg.n_layer + 1))?;
|
|
Ok(Self {
|
|
embedding,
|
|
blocks,
|
|
head,
|
|
span: tracing::span!(tracing::Level::TRACE, "mixformer"),
|
|
})
|
|
}
|
|
|
|
pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
|
|
let _enter = self.span.enter();
|
|
let (_b_size, seq_len) = xs.dims2()?;
|
|
let mut xs = xs.apply(&self.embedding)?;
|
|
let mask = if seq_len <= 1 {
|
|
None
|
|
} else {
|
|
Some(get_mask(seq_len, xs.device())?)
|
|
};
|
|
for block in self.blocks.iter_mut() {
|
|
xs = block.forward(&xs, mask.as_ref())?
|
|
}
|
|
xs.narrow(1, seq_len - 1, 1)?.apply(&self.head)?.squeeze(1)
|
|
}
|
|
|
|
pub fn clear_kv_cache(&mut self) {
|
|
self.blocks.iter_mut().for_each(|b| b.clear_kv_cache())
|
|
}
|
|
}
|